734 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			734 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DDRVLS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
 | |
| *                          NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
 | |
| *                          COPYB, C, S, COPYS, WORK, IWORK, NOUT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            TSTERR
 | |
| *       INTEGER            NM, NN, NNB, NNS, NOUT
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
 | |
| *      $                   NVAL( * ), NXVAL( * )
 | |
| *       DOUBLE PRECISION   A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
 | |
| *      $                   COPYS( * ), S( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DDRVLS tests the least squares driver routines DGELS, DGELSS, DGELSX,
 | |
| *> DGELSY and DGELSD.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          The matrix types to be used for testing.  Matrices of type j
 | |
| *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | |
| *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | |
| *>          The matrix of type j is generated as follows:
 | |
| *>          j=1: A = U*D*V where U and V are random orthogonal matrices
 | |
| *>               and D has random entries (> 0.1) taken from a uniform 
 | |
| *>               distribution (0,1). A is full rank.
 | |
| *>          j=2: The same of 1, but A is scaled up.
 | |
| *>          j=3: The same of 1, but A is scaled down.
 | |
| *>          j=4: A = U*D*V where U and V are random orthogonal matrices
 | |
| *>               and D has 3*min(M,N)/4 random entries (> 0.1) taken
 | |
| *>               from a uniform distribution (0,1) and the remaining
 | |
| *>               entries set to 0. A is rank-deficient. 
 | |
| *>          j=5: The same of 4, but A is scaled up.
 | |
| *>          j=6: The same of 5, but A is scaled down.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NM
 | |
| *> \verbatim
 | |
| *>          NM is INTEGER
 | |
| *>          The number of values of M contained in the vector MVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MVAL
 | |
| *> \verbatim
 | |
| *>          MVAL is INTEGER array, dimension (NM)
 | |
| *>          The values of the matrix row dimension M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER
 | |
| *>          The number of values of N contained in the vector NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NVAL
 | |
| *> \verbatim
 | |
| *>          NVAL is INTEGER array, dimension (NN)
 | |
| *>          The values of the matrix column dimension N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NNS
 | |
| *> \verbatim
 | |
| *>          NNS is INTEGER
 | |
| *>          The number of values of NRHS contained in the vector NSVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NSVAL
 | |
| *> \verbatim
 | |
| *>          NSVAL is INTEGER array, dimension (NNS)
 | |
| *>          The values of the number of right hand sides NRHS.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NNB
 | |
| *> \verbatim
 | |
| *>          NNB is INTEGER
 | |
| *>          The number of values of NB and NX contained in the
 | |
| *>          vectors NBVAL and NXVAL.  The blocking parameters are used
 | |
| *>          in pairs (NB,NX).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NBVAL
 | |
| *> \verbatim
 | |
| *>          NBVAL is INTEGER array, dimension (NNB)
 | |
| *>          The values of the blocksize NB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NXVAL
 | |
| *> \verbatim
 | |
| *>          NXVAL is INTEGER array, dimension (NNB)
 | |
| *>          The values of the crossover point NX.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          The threshold value for the test ratios.  A result is
 | |
| *>          included in the output file if RESULT >= THRESH.  To have
 | |
| *>          every test ratio printed, use THRESH = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSTERR
 | |
| *> \verbatim
 | |
| *>          TSTERR is LOGICAL
 | |
| *>          Flag that indicates whether error exits are to be tested.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (MMAX*NMAX)
 | |
| *>          where MMAX is the maximum value of M in MVAL and NMAX is the
 | |
| *>          maximum value of N in NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] COPYA
 | |
| *> \verbatim
 | |
| *>          COPYA is DOUBLE PRECISION array, dimension (MMAX*NMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (MMAX*NSMAX)
 | |
| *>          where MMAX is the maximum value of M in MVAL and NSMAX is the
 | |
| *>          maximum value of NRHS in NSVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] COPYB
 | |
| *> \verbatim
 | |
| *>          COPYB is DOUBLE PRECISION array, dimension (MMAX*NSMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension (MMAX*NSMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension
 | |
| *>                      (min(MMAX,NMAX))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] COPYS
 | |
| *> \verbatim
 | |
| *>          COPYS is DOUBLE PRECISION array, dimension
 | |
| *>                      (min(MMAX,NMAX))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array,
 | |
| *>                      dimension (MMAX*NMAX + 4*NMAX + MMAX).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (15*NMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUT
 | |
| *> \verbatim
 | |
| *>          NOUT is INTEGER
 | |
| *>          The unit number for output.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
 | |
|      $                   NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
 | |
|      $                   COPYB, C, S, COPYS, WORK, IWORK, NOUT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            TSTERR
 | |
|       INTEGER            NM, NN, NNB, NNS, NOUT
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
 | |
|      $                   NVAL( * ), NXVAL( * )
 | |
|       DOUBLE PRECISION   A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
 | |
|      $                   COPYS( * ), S( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            NTESTS
 | |
|       PARAMETER          ( NTESTS = 18 )
 | |
|       INTEGER            SMLSIZ
 | |
|       PARAMETER          ( SMLSIZ = 25 )
 | |
|       DOUBLE PRECISION   ONE, TWO, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D0, TWO = 2.0D0, ZERO = 0.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          TRANS
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            CRANK, I, IM, IN, INB, INFO, INS, IRANK, 
 | |
|      $                   ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK, 
 | |
|      $                   LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS, 
 | |
|      $                   NFAIL, NLVL, NRHS, NROWS, NRUN, RANK
 | |
|       DOUBLE PRECISION   EPS, NORMA, NORMB, RCOND
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | |
|       DOUBLE PRECISION   RESULT( NTESTS )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DASUM, DLAMCH, DQRT12, DQRT14, DQRT17
 | |
|       EXTERNAL           DASUM, DLAMCH, DQRT12, DQRT14, DQRT17
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ALAERH, ALAHD, ALASVM, DAXPY, DERRLS, DGELS,
 | |
|      $                   DGELSD, DGELSS, DGELSX, DGELSY, DGEMM, DLACPY,
 | |
|      $                   DLARNV, DLASRT, DQRT13, DQRT15, DQRT16, DSCAL,
 | |
|      $                   XLAENV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, INT, LOG, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       LOGICAL            LERR, OK
 | |
|       CHARACTER*32       SRNAMT
 | |
|       INTEGER            INFOT, IOUNIT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / INFOC / INFOT, IOUNIT, OK, LERR
 | |
|       COMMON             / SRNAMC / SRNAMT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Initialize constants and the random number seed.
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Double precision'
 | |
|       PATH( 2: 3 ) = 'LS'
 | |
|       NRUN = 0
 | |
|       NFAIL = 0
 | |
|       NERRS = 0
 | |
|       DO 10 I = 1, 4
 | |
|          ISEED( I ) = ISEEDY( I )
 | |
|    10 CONTINUE
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
| *
 | |
| *     Threshold for rank estimation
 | |
| *
 | |
|       RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
 | |
| *
 | |
| *     Test the error exits
 | |
| *
 | |
|       CALL XLAENV( 2, 2 )
 | |
|       CALL XLAENV( 9, SMLSIZ )
 | |
|       IF( TSTERR )
 | |
|      $   CALL DERRLS( PATH, NOUT )
 | |
| *
 | |
| *     Print the header if NM = 0 or NN = 0 and THRESH = 0.
 | |
| *
 | |
|       IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
 | |
|      $   CALL ALAHD( NOUT, PATH )
 | |
|       INFOT = 0
 | |
|       CALL XLAENV( 2, 2 )
 | |
|       CALL XLAENV( 9, SMLSIZ )
 | |
| *
 | |
|       DO 150 IM = 1, NM
 | |
|          M = MVAL( IM )
 | |
|          LDA = MAX( 1, M )
 | |
| *
 | |
|          DO 140 IN = 1, NN
 | |
|             N = NVAL( IN )
 | |
|             MNMIN = MIN( M, N )
 | |
|             LDB = MAX( 1, M, N )
 | |
| *
 | |
|             DO 130 INS = 1, NNS
 | |
|                NRHS = NSVAL( INS )
 | |
|                NLVL = MAX( INT( LOG( MAX( ONE, DBLE( MNMIN ) ) /
 | |
|      $                DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1, 0 )
 | |
|                LWORK = MAX( 1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ),
 | |
|      $                 M*N+4*MNMIN+MAX( M, N ), 12*MNMIN+2*MNMIN*SMLSIZ+
 | |
|      $                 8*MNMIN*NLVL+MNMIN*NRHS+(SMLSIZ+1)**2 )
 | |
| *
 | |
|                DO 120 IRANK = 1, 2
 | |
|                   DO 110 ISCALE = 1, 3
 | |
|                      ITYPE = ( IRANK-1 )*3 + ISCALE
 | |
|                      IF( .NOT.DOTYPE( ITYPE ) )
 | |
|      $                  GO TO 110
 | |
| *
 | |
|                      IF( IRANK.EQ.1 ) THEN
 | |
| *
 | |
| *                       Test DGELS
 | |
| *
 | |
| *                       Generate a matrix of scaling type ISCALE
 | |
| *
 | |
|                         CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
 | |
|      $                               ISEED )
 | |
|                         DO 40 INB = 1, NNB
 | |
|                            NB = NBVAL( INB )
 | |
|                            CALL XLAENV( 1, NB )
 | |
|                            CALL XLAENV( 3, NXVAL( INB ) )
 | |
| *
 | |
|                            DO 30 ITRAN = 1, 2
 | |
|                               IF( ITRAN.EQ.1 ) THEN
 | |
|                                  TRANS = 'N'
 | |
|                                  NROWS = M
 | |
|                                  NCOLS = N
 | |
|                               ELSE
 | |
|                                  TRANS = 'T'
 | |
|                                  NROWS = N
 | |
|                                  NCOLS = M
 | |
|                               END IF
 | |
|                               LDWORK = MAX( 1, NCOLS )
 | |
| *
 | |
| *                             Set up a consistent rhs
 | |
| *
 | |
|                               IF( NCOLS.GT.0 ) THEN
 | |
|                                  CALL DLARNV( 2, ISEED, NCOLS*NRHS,
 | |
|      $                                        WORK )
 | |
|                                  CALL DSCAL( NCOLS*NRHS,
 | |
|      $                                       ONE / DBLE( NCOLS ), WORK,
 | |
|      $                                       1 )
 | |
|                               END IF
 | |
|                               CALL DGEMM( TRANS, 'No transpose', NROWS,
 | |
|      $                                    NRHS, NCOLS, ONE, COPYA, LDA,
 | |
|      $                                    WORK, LDWORK, ZERO, B, LDB )
 | |
|                               CALL DLACPY( 'Full', NROWS, NRHS, B, LDB,
 | |
|      $                                     COPYB, LDB )
 | |
| *
 | |
| *                             Solve LS or overdetermined system
 | |
| *
 | |
|                               IF( M.GT.0 .AND. N.GT.0 ) THEN
 | |
|                                  CALL DLACPY( 'Full', M, N, COPYA, LDA,
 | |
|      $                                        A, LDA )
 | |
|                                  CALL DLACPY( 'Full', NROWS, NRHS,
 | |
|      $                                        COPYB, LDB, B, LDB )
 | |
|                               END IF
 | |
|                               SRNAMT = 'DGELS '
 | |
|                               CALL DGELS( TRANS, M, N, NRHS, A, LDA, B,
 | |
|      $                                    LDB, WORK, LWORK, INFO )
 | |
|                               IF( INFO.NE.0 )
 | |
|      $                           CALL ALAERH( PATH, 'DGELS ', INFO, 0,
 | |
|      $                                        TRANS, M, N, NRHS, -1, NB,
 | |
|      $                                        ITYPE, NFAIL, NERRS,
 | |
|      $                                        NOUT )
 | |
| *
 | |
| *                             Check correctness of results
 | |
| *
 | |
|                               LDWORK = MAX( 1, NROWS )
 | |
|                               IF( NROWS.GT.0 .AND. NRHS.GT.0 )
 | |
|      $                           CALL DLACPY( 'Full', NROWS, NRHS,
 | |
|      $                                        COPYB, LDB, C, LDB )
 | |
|                               CALL DQRT16( TRANS, M, N, NRHS, COPYA,
 | |
|      $                                     LDA, B, LDB, C, LDB, WORK,
 | |
|      $                                     RESULT( 1 ) )
 | |
| *
 | |
|                               IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
 | |
|      $                            ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
 | |
| *
 | |
| *                                Solving LS system
 | |
| *
 | |
|                                  RESULT( 2 ) = DQRT17( TRANS, 1, M, N,
 | |
|      $                                         NRHS, COPYA, LDA, B, LDB,
 | |
|      $                                         COPYB, LDB, C, WORK,
 | |
|      $                                         LWORK )
 | |
|                               ELSE
 | |
| *
 | |
| *                                Solving overdetermined system
 | |
| *
 | |
|                                  RESULT( 2 ) = DQRT14( TRANS, M, N,
 | |
|      $                                         NRHS, COPYA, LDA, B, LDB,
 | |
|      $                                         WORK, LWORK )
 | |
|                               END IF
 | |
| *
 | |
| *                             Print information about the tests that
 | |
| *                             did not pass the threshold.
 | |
| *
 | |
|                               DO 20 K = 1, 2
 | |
|                                  IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                                 CALL ALAHD( NOUT, PATH )
 | |
|                                     WRITE( NOUT, FMT = 9999 )TRANS, M,
 | |
|      $                                 N, NRHS, NB, ITYPE, K,
 | |
|      $                                 RESULT( K )
 | |
|                                     NFAIL = NFAIL + 1
 | |
|                                  END IF
 | |
|    20                         CONTINUE
 | |
|                               NRUN = NRUN + 2
 | |
|    30                      CONTINUE
 | |
|    40                   CONTINUE
 | |
|                      END IF
 | |
| *
 | |
| *                    Generate a matrix of scaling type ISCALE and rank
 | |
| *                    type IRANK.
 | |
| *
 | |
|                      CALL DQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
 | |
|      $                            COPYB, LDB, COPYS, RANK, NORMA, NORMB,
 | |
|      $                            ISEED, WORK, LWORK )
 | |
| *
 | |
| *                    workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
 | |
| *
 | |
| *                    Initialize vector IWORK.
 | |
| *
 | |
|                      DO 50 J = 1, N
 | |
|                         IWORK( J ) = 0
 | |
|    50                CONTINUE
 | |
|                      LDWORK = MAX( 1, M )
 | |
| *
 | |
| *                    Test DGELSX
 | |
| *
 | |
| *                    DGELSX:  Compute the minimum-norm solution X
 | |
| *                    to min( norm( A * X - B ) ) using a complete
 | |
| *                    orthogonal factorization.
 | |
| *
 | |
|                      CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
 | |
|                      CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B, LDB )
 | |
| *
 | |
|                      SRNAMT = 'DGELSX'
 | |
|                      CALL DGELSX( M, N, NRHS, A, LDA, B, LDB, IWORK,
 | |
|      $                            RCOND, CRANK, WORK, INFO )
 | |
|                      IF( INFO.NE.0 )
 | |
|      $                  CALL ALAERH( PATH, 'DGELSX', INFO, 0, ' ', M, N,
 | |
|      $                               NRHS, -1, NB, ITYPE, NFAIL, NERRS,
 | |
|      $                               NOUT )
 | |
| *
 | |
| *                    workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS )
 | |
| *
 | |
| *                    Test 3:  Compute relative error in svd
 | |
| *                             workspace: M*N + 4*MIN(M,N) + MAX(M,N)
 | |
| *
 | |
|                      RESULT( 3 ) = DQRT12( CRANK, CRANK, A, LDA, COPYS,
 | |
|      $                             WORK, LWORK )
 | |
| *
 | |
| *                    Test 4:  Compute error in solution
 | |
| *                             workspace:  M*NRHS + M
 | |
| *
 | |
|                      CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
 | |
|      $                            LDWORK )
 | |
|                      CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
 | |
|      $                            LDA, B, LDB, WORK, LDWORK,
 | |
|      $                            WORK( M*NRHS+1 ), RESULT( 4 ) )
 | |
| *
 | |
| *                    Test 5:  Check norm of r'*A
 | |
| *                             workspace: NRHS*(M+N)
 | |
| *
 | |
|                      RESULT( 5 ) = ZERO
 | |
|                      IF( M.GT.CRANK )
 | |
|      $                  RESULT( 5 ) = DQRT17( 'No transpose', 1, M, N,
 | |
|      $                                NRHS, COPYA, LDA, B, LDB, COPYB,
 | |
|      $                                LDB, C, WORK, LWORK )
 | |
| *
 | |
| *                    Test 6:  Check if x is in the rowspace of A
 | |
| *                             workspace: (M+NRHS)*(N+2)
 | |
| *
 | |
|                      RESULT( 6 ) = ZERO
 | |
| *
 | |
|                      IF( N.GT.CRANK )
 | |
|      $                  RESULT( 6 ) = DQRT14( 'No transpose', M, N,
 | |
|      $                                NRHS, COPYA, LDA, B, LDB, WORK,
 | |
|      $                                LWORK )
 | |
| *
 | |
| *                    Print information about the tests that did not
 | |
| *                    pass the threshold.
 | |
| *
 | |
|                      DO 60 K = 3, 6
 | |
|                         IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                        CALL ALAHD( NOUT, PATH )
 | |
|                            WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
 | |
|      $                        ITYPE, K, RESULT( K )
 | |
|                            NFAIL = NFAIL + 1
 | |
|                         END IF
 | |
|    60                CONTINUE
 | |
|                      NRUN = NRUN + 4
 | |
| *
 | |
| *                    Loop for testing different block sizes.
 | |
| *
 | |
|                      DO 100 INB = 1, NNB
 | |
|                         NB = NBVAL( INB )
 | |
|                         CALL XLAENV( 1, NB )
 | |
|                         CALL XLAENV( 3, NXVAL( INB ) )
 | |
| *
 | |
| *                       Test DGELSY
 | |
| *
 | |
| *                       DGELSY:  Compute the minimum-norm solution X
 | |
| *                       to min( norm( A * X - B ) )
 | |
| *                       using the rank-revealing orthogonal
 | |
| *                       factorization.
 | |
| *
 | |
| *                       Initialize vector IWORK.
 | |
| *
 | |
|                         DO 70 J = 1, N
 | |
|                            IWORK( J ) = 0
 | |
|    70                   CONTINUE
 | |
| *
 | |
| *                       Set LWLSY to the adequate value.
 | |
| *
 | |
|                         LWLSY = MAX( 1, MNMIN+2*N+NB*( N+1 ),
 | |
|      $                          2*MNMIN+NB*NRHS )
 | |
| *
 | |
|                         CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
 | |
|                         CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
 | |
|      $                               LDB )
 | |
| *
 | |
|                         SRNAMT = 'DGELSY'
 | |
|                         CALL DGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
 | |
|      $                               RCOND, CRANK, WORK, LWLSY, INFO )
 | |
|                         IF( INFO.NE.0 )
 | |
|      $                     CALL ALAERH( PATH, 'DGELSY', INFO, 0, ' ', M,
 | |
|      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
 | |
|      $                                  NERRS, NOUT )
 | |
| *
 | |
| *                       Test 7:  Compute relative error in svd
 | |
| *                                workspace: M*N + 4*MIN(M,N) + MAX(M,N)
 | |
| *
 | |
|                         RESULT( 7 ) = DQRT12( CRANK, CRANK, A, LDA,
 | |
|      $                                COPYS, WORK, LWORK )
 | |
| *
 | |
| *                       Test 8:  Compute error in solution
 | |
| *                                workspace:  M*NRHS + M
 | |
| *
 | |
|                         CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
 | |
|      $                               LDWORK )
 | |
|                         CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
 | |
|      $                               LDA, B, LDB, WORK, LDWORK,
 | |
|      $                               WORK( M*NRHS+1 ), RESULT( 8 ) )
 | |
| *
 | |
| *                       Test 9:  Check norm of r'*A
 | |
| *                                workspace: NRHS*(M+N)
 | |
| *
 | |
|                         RESULT( 9 ) = ZERO
 | |
|                         IF( M.GT.CRANK )
 | |
|      $                     RESULT( 9 ) = DQRT17( 'No transpose', 1, M,
 | |
|      $                                   N, NRHS, COPYA, LDA, B, LDB,
 | |
|      $                                   COPYB, LDB, C, WORK, LWORK )
 | |
| *
 | |
| *                       Test 10:  Check if x is in the rowspace of A
 | |
| *                                workspace: (M+NRHS)*(N+2)
 | |
| *
 | |
|                         RESULT( 10 ) = ZERO
 | |
| *
 | |
|                         IF( N.GT.CRANK )
 | |
|      $                     RESULT( 10 ) = DQRT14( 'No transpose', M, N,
 | |
|      $                                    NRHS, COPYA, LDA, B, LDB,
 | |
|      $                                    WORK, LWORK )
 | |
| *
 | |
| *                       Test DGELSS
 | |
| *
 | |
| *                       DGELSS:  Compute the minimum-norm solution X
 | |
| *                       to min( norm( A * X - B ) )
 | |
| *                       using the SVD.
 | |
| *
 | |
|                         CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
 | |
|                         CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
 | |
|      $                               LDB )
 | |
|                         SRNAMT = 'DGELSS'
 | |
|                         CALL DGELSS( M, N, NRHS, A, LDA, B, LDB, S,
 | |
|      $                               RCOND, CRANK, WORK, LWORK, INFO )
 | |
|                         IF( INFO.NE.0 )
 | |
|      $                     CALL ALAERH( PATH, 'DGELSS', INFO, 0, ' ', M,
 | |
|      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
 | |
|      $                                  NERRS, NOUT )
 | |
| *
 | |
| *                       workspace used: 3*min(m,n) +
 | |
| *                                       max(2*min(m,n),nrhs,max(m,n))
 | |
| *
 | |
| *                       Test 11:  Compute relative error in svd
 | |
| *
 | |
|                         IF( RANK.GT.0 ) THEN
 | |
|                            CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
 | |
|                            RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
 | |
|      $                                    DASUM( MNMIN, COPYS, 1 ) /
 | |
|      $                                    ( EPS*DBLE( MNMIN ) )
 | |
|                         ELSE
 | |
|                            RESULT( 11 ) = ZERO
 | |
|                         END IF
 | |
| *
 | |
| *                       Test 12:  Compute error in solution
 | |
| *
 | |
|                         CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
 | |
|      $                               LDWORK )
 | |
|                         CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
 | |
|      $                               LDA, B, LDB, WORK, LDWORK,
 | |
|      $                               WORK( M*NRHS+1 ), RESULT( 12 ) )
 | |
| *
 | |
| *                       Test 13:  Check norm of r'*A
 | |
| *
 | |
|                         RESULT( 13 ) = ZERO
 | |
|                         IF( M.GT.CRANK )
 | |
|      $                     RESULT( 13 ) = DQRT17( 'No transpose', 1, M,
 | |
|      $                                    N, NRHS, COPYA, LDA, B, LDB,
 | |
|      $                                    COPYB, LDB, C, WORK, LWORK )
 | |
| *
 | |
| *                       Test 14:  Check if x is in the rowspace of A
 | |
| *
 | |
|                         RESULT( 14 ) = ZERO
 | |
|                         IF( N.GT.CRANK )
 | |
|      $                     RESULT( 14 ) = DQRT14( 'No transpose', M, N,
 | |
|      $                                    NRHS, COPYA, LDA, B, LDB,
 | |
|      $                                    WORK, LWORK )
 | |
| *
 | |
| *                       Test DGELSD
 | |
| *
 | |
| *                       DGELSD:  Compute the minimum-norm solution X
 | |
| *                       to min( norm( A * X - B ) ) using a
 | |
| *                       divide and conquer SVD.
 | |
| *
 | |
| *                       Initialize vector IWORK.
 | |
| *
 | |
|                         DO 80 J = 1, N
 | |
|                            IWORK( J ) = 0
 | |
|    80                   CONTINUE
 | |
| *
 | |
|                         CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
 | |
|                         CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
 | |
|      $                               LDB )
 | |
| *
 | |
|                         SRNAMT = 'DGELSD'
 | |
|                         CALL DGELSD( M, N, NRHS, A, LDA, B, LDB, S,
 | |
|      $                               RCOND, CRANK, WORK, LWORK, IWORK,
 | |
|      $                               INFO )
 | |
|                         IF( INFO.NE.0 )
 | |
|      $                     CALL ALAERH( PATH, 'DGELSD', INFO, 0, ' ', M,
 | |
|      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
 | |
|      $                                  NERRS, NOUT )
 | |
| *
 | |
| *                       Test 15:  Compute relative error in svd
 | |
| *
 | |
|                         IF( RANK.GT.0 ) THEN
 | |
|                            CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
 | |
|                            RESULT( 15 ) = DASUM( MNMIN, S, 1 ) /
 | |
|      $                                    DASUM( MNMIN, COPYS, 1 ) /
 | |
|      $                                    ( EPS*DBLE( MNMIN ) )
 | |
|                         ELSE
 | |
|                            RESULT( 15 ) = ZERO
 | |
|                         END IF
 | |
| *
 | |
| *                       Test 16:  Compute error in solution
 | |
| *
 | |
|                         CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
 | |
|      $                               LDWORK )
 | |
|                         CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
 | |
|      $                               LDA, B, LDB, WORK, LDWORK,
 | |
|      $                               WORK( M*NRHS+1 ), RESULT( 16 ) )
 | |
| *
 | |
| *                       Test 17:  Check norm of r'*A
 | |
| *
 | |
|                         RESULT( 17 ) = ZERO
 | |
|                         IF( M.GT.CRANK )
 | |
|      $                     RESULT( 17 ) = DQRT17( 'No transpose', 1, M,
 | |
|      $                                    N, NRHS, COPYA, LDA, B, LDB,
 | |
|      $                                    COPYB, LDB, C, WORK, LWORK )
 | |
| *
 | |
| *                       Test 18:  Check if x is in the rowspace of A
 | |
| *
 | |
|                         RESULT( 18 ) = ZERO
 | |
|                         IF( N.GT.CRANK )
 | |
|      $                     RESULT( 18 ) = DQRT14( 'No transpose', M, N,
 | |
|      $                                    NRHS, COPYA, LDA, B, LDB,
 | |
|      $                                    WORK, LWORK )
 | |
| *
 | |
| *                       Print information about the tests that did not
 | |
| *                       pass the threshold.
 | |
| *
 | |
|                         DO 90 K = 7, NTESTS
 | |
|                            IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                           CALL ALAHD( NOUT, PATH )
 | |
|                               WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
 | |
|      $                           ITYPE, K, RESULT( K )
 | |
|                               NFAIL = NFAIL + 1
 | |
|                            END IF
 | |
|    90                   CONTINUE
 | |
|                         NRUN = NRUN + 12 
 | |
| *
 | |
|   100                CONTINUE
 | |
|   110             CONTINUE
 | |
|   120          CONTINUE
 | |
|   130       CONTINUE
 | |
|   140    CONTINUE
 | |
|   150 CONTINUE
 | |
| *
 | |
| *     Print a summary of the results.
 | |
| *
 | |
|       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | |
| *
 | |
|  9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
 | |
|      $      ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
 | |
|  9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
 | |
|      $      ', type', I2, ', test(', I2, ')=', G12.5 )
 | |
|       RETURN
 | |
| *
 | |
| *     End of DDRVLS
 | |
| *
 | |
|       END
 |