535 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			535 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGGSVP
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGGSVP + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggsvp.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggsvp.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggsvp.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
 | |
| *                          TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
 | |
| *                          IWORK, RWORK, TAU, WORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBQ, JOBU, JOBV
 | |
| *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
 | |
| *       REAL               TOLA, TOLB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
| *      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGGSVP computes unitary matrices U, V and Q such that
 | |
| *>
 | |
| *>                    N-K-L  K    L
 | |
| *>  U**H*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
 | |
| *>                 L ( 0     0   A23 )
 | |
| *>             M-K-L ( 0     0    0  )
 | |
| *>
 | |
| *>                  N-K-L  K    L
 | |
| *>         =     K ( 0    A12  A13 )  if M-K-L < 0;
 | |
| *>             M-K ( 0     0   A23 )
 | |
| *>
 | |
| *>                  N-K-L  K    L
 | |
| *>  V**H*B*Q =   L ( 0     0   B13 )
 | |
| *>             P-L ( 0     0    0  )
 | |
| *>
 | |
| *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 | |
| *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 | |
| *> otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
 | |
| *> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. 
 | |
| *>
 | |
| *> This decomposition is the preprocessing step for computing the
 | |
| *> Generalized Singular Value Decomposition (GSVD), see subroutine
 | |
| *> CGGSVD.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBU
 | |
| *> \verbatim
 | |
| *>          JOBU is CHARACTER*1
 | |
| *>          = 'U':  Unitary matrix U is computed;
 | |
| *>          = 'N':  U is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV
 | |
| *> \verbatim
 | |
| *>          JOBV is CHARACTER*1
 | |
| *>          = 'V':  Unitary matrix V is computed;
 | |
| *>          = 'N':  V is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBQ
 | |
| *> \verbatim
 | |
| *>          JOBQ is CHARACTER*1
 | |
| *>          = 'Q':  Unitary matrix Q is computed;
 | |
| *>          = 'N':  Q is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of rows of the matrix B.  P >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, A contains the triangular (or trapezoidal) matrix
 | |
| *>          described in the Purpose section.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          On entry, the P-by-N matrix B.
 | |
| *>          On exit, B contains the triangular matrix described in
 | |
| *>          the Purpose section.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TOLA
 | |
| *> \verbatim
 | |
| *>          TOLA is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TOLB
 | |
| *> \verbatim
 | |
| *>          TOLB is REAL
 | |
| *>
 | |
| *>          TOLA and TOLB are the thresholds to determine the effective
 | |
| *>          numerical rank of matrix B and a subblock of A. Generally,
 | |
| *>          they are set to
 | |
| *>             TOLA = MAX(M,N)*norm(A)*MACHEPS,
 | |
| *>             TOLB = MAX(P,N)*norm(B)*MACHEPS.
 | |
| *>          The size of TOLA and TOLB may affect the size of backward
 | |
| *>          errors of the decomposition.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] L
 | |
| *> \verbatim
 | |
| *>          L is INTEGER
 | |
| *>
 | |
| *>          On exit, K and L specify the dimension of the subblocks
 | |
| *>          described in Purpose section.
 | |
| *>          K + L = effective numerical rank of (A**H,B**H)**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX array, dimension (LDU,M)
 | |
| *>          If JOBU = 'U', U contains the unitary matrix U.
 | |
| *>          If JOBU = 'N', U is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U. LDU >= max(1,M) if
 | |
| *>          JOBU = 'U'; LDU >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX array, dimension (LDV,P)
 | |
| *>          If JOBV = 'V', V contains the unitary matrix V.
 | |
| *>          If JOBV = 'N', V is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V. LDV >= max(1,P) if
 | |
| *>          JOBV = 'V'; LDV >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX array, dimension (LDQ,N)
 | |
| *>          If JOBQ = 'Q', Q contains the unitary matrix Q.
 | |
| *>          If JOBQ = 'N', Q is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q. LDQ >= max(1,N) if
 | |
| *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (max(3*N,M,P))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *>  The subroutine uses LAPACK subroutine CGEQPF for the QR factorization
 | |
| *>  with column pivoting to detect the effective numerical rank of the
 | |
| *>  a matrix. It may be replaced by a better rank determination strategy.
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
 | |
|      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
 | |
|      $                   IWORK, RWORK, TAU, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBQ, JOBU, JOBV
 | |
|       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
 | |
|       REAL               TOLA, TOLB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
|      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
 | |
|       INTEGER            I, J
 | |
|       COMPLEX            T
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEQPF, CGEQR2, CGERQ2, CLACPY, CLAPMT, CLASET,
 | |
|      $                   CUNG2R, CUNM2R, CUNMR2, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( T ) = ABS( REAL( T ) ) + ABS( AIMAG( T ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       WANTU = LSAME( JOBU, 'U' )
 | |
|       WANTV = LSAME( JOBV, 'V' )
 | |
|       WANTQ = LSAME( JOBQ, 'Q' )
 | |
|       FORWRD = .TRUE.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( P.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
 | |
|          INFO = -16
 | |
|       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
 | |
|          INFO = -18
 | |
|       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 | |
|          INFO = -20
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGGSVP', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     QR with column pivoting of B: B*P = V*( S11 S12 )
 | |
| *                                           (  0   0  )
 | |
| *
 | |
|       DO 10 I = 1, N
 | |
|          IWORK( I ) = 0
 | |
|    10 CONTINUE
 | |
|       CALL CGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO )
 | |
| *
 | |
| *     Update A := A*P
 | |
| *
 | |
|       CALL CLAPMT( FORWRD, M, N, A, LDA, IWORK )
 | |
| *
 | |
| *     Determine the effective rank of matrix B.
 | |
| *
 | |
|       L = 0
 | |
|       DO 20 I = 1, MIN( P, N )
 | |
|          IF( CABS1( B( I, I ) ).GT.TOLB )
 | |
|      $      L = L + 1
 | |
|    20 CONTINUE
 | |
| *
 | |
|       IF( WANTV ) THEN
 | |
| *
 | |
| *        Copy the details of V, and form V.
 | |
| *
 | |
|          CALL CLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
 | |
|          IF( P.GT.1 )
 | |
|      $      CALL CLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
 | |
|      $                   LDV )
 | |
|          CALL CUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
 | |
|       END IF
 | |
| *
 | |
| *     Clean up B
 | |
| *
 | |
|       DO 40 J = 1, L - 1
 | |
|          DO 30 I = J + 1, L
 | |
|             B( I, J ) = CZERO
 | |
|    30    CONTINUE
 | |
|    40 CONTINUE
 | |
|       IF( P.GT.L )
 | |
|      $   CALL CLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
 | |
| *
 | |
|       IF( WANTQ ) THEN
 | |
| *
 | |
| *        Set Q = I and Update Q := Q*P
 | |
| *
 | |
|          CALL CLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
 | |
|          CALL CLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
 | |
|       END IF
 | |
| *
 | |
|       IF( P.GE.L .AND. N.NE.L ) THEN
 | |
| *
 | |
| *        RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
 | |
| *
 | |
|          CALL CGERQ2( L, N, B, LDB, TAU, WORK, INFO )
 | |
| *
 | |
| *        Update A := A*Z**H
 | |
| *
 | |
|          CALL CUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
 | |
|      $                TAU, A, LDA, WORK, INFO )
 | |
|          IF( WANTQ ) THEN
 | |
| *
 | |
| *           Update Q := Q*Z**H
 | |
| *
 | |
|             CALL CUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
 | |
|      $                   LDB, TAU, Q, LDQ, WORK, INFO )
 | |
|          END IF
 | |
| *
 | |
| *        Clean up B
 | |
| *
 | |
|          CALL CLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
 | |
|          DO 60 J = N - L + 1, N
 | |
|             DO 50 I = J - N + L + 1, L
 | |
|                B( I, J ) = CZERO
 | |
|    50       CONTINUE
 | |
|    60    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Let              N-L     L
 | |
| *                A = ( A11    A12 ) M,
 | |
| *
 | |
| *     then the following does the complete QR decomposition of A11:
 | |
| *
 | |
| *              A11 = U*(  0  T12 )*P1**H
 | |
| *                      (  0   0  )
 | |
| *
 | |
|       DO 70 I = 1, N - L
 | |
|          IWORK( I ) = 0
 | |
|    70 CONTINUE
 | |
|       CALL CGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO )
 | |
| *
 | |
| *     Determine the effective rank of A11
 | |
| *
 | |
|       K = 0
 | |
|       DO 80 I = 1, MIN( M, N-L )
 | |
|          IF( CABS1( A( I, I ) ).GT.TOLA )
 | |
|      $      K = K + 1
 | |
|    80 CONTINUE
 | |
| *
 | |
| *     Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
 | |
| *
 | |
|       CALL CUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
 | |
|      $             A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
 | |
| *
 | |
|       IF( WANTU ) THEN
 | |
| *
 | |
| *        Copy the details of U, and form U
 | |
| *
 | |
|          CALL CLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
 | |
|          IF( M.GT.1 )
 | |
|      $      CALL CLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
 | |
|      $                   LDU )
 | |
|          CALL CUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTQ ) THEN
 | |
| *
 | |
| *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
 | |
| *
 | |
|          CALL CLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
 | |
|       END IF
 | |
| *
 | |
| *     Clean up A: set the strictly lower triangular part of
 | |
| *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
 | |
| *
 | |
|       DO 100 J = 1, K - 1
 | |
|          DO 90 I = J + 1, K
 | |
|             A( I, J ) = CZERO
 | |
|    90    CONTINUE
 | |
|   100 CONTINUE
 | |
|       IF( M.GT.K )
 | |
|      $   CALL CLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
 | |
| *
 | |
|       IF( N-L.GT.K ) THEN
 | |
| *
 | |
| *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
 | |
| *
 | |
|          CALL CGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
 | |
| *
 | |
|          IF( WANTQ ) THEN
 | |
| *
 | |
| *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
 | |
| *
 | |
|             CALL CUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
 | |
|      $                   LDA, TAU, Q, LDQ, WORK, INFO )
 | |
|          END IF
 | |
| *
 | |
| *        Clean up A
 | |
| *
 | |
|          CALL CLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
 | |
|          DO 120 J = N - L - K + 1, N - L
 | |
|             DO 110 I = J - N + L + K + 1, K
 | |
|                A( I, J ) = CZERO
 | |
|   110       CONTINUE
 | |
|   120    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       IF( M.GT.K ) THEN
 | |
| *
 | |
| *        QR factorization of A( K+1:M,N-L+1:N )
 | |
| *
 | |
|          CALL CGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
 | |
| *
 | |
|          IF( WANTU ) THEN
 | |
| *
 | |
| *           Update U(:,K+1:M) := U(:,K+1:M)*U1
 | |
| *
 | |
|             CALL CUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
 | |
|      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
 | |
|      $                   WORK, INFO )
 | |
|          END IF
 | |
| *
 | |
| *        Clean up
 | |
| *
 | |
|          DO 140 J = N - L + 1, N
 | |
|             DO 130 I = J - N + K + L + 1, M
 | |
|                A( I, J ) = CZERO
 | |
|   130       CONTINUE
 | |
|   140    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGGSVP
 | |
| *
 | |
|       END
 |