1368 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1368 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SHGEQZ
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SHGEQZ + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/shgeqz.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/shgeqz.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/shgeqz.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
 | |
| *                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
 | |
| *                          LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          COMPQ, COMPZ, JOB
 | |
| *       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               ALPHAI( * ), ALPHAR( * ), BETA( * ),
 | |
| *      $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
 | |
| *      $                   WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SHGEQZ computes the eigenvalues of a real matrix pair (H,T),
 | |
| *> where H is an upper Hessenberg matrix and T is upper triangular,
 | |
| *> using the double-shift QZ method.
 | |
| *> Matrix pairs of this type are produced by the reduction to
 | |
| *> generalized upper Hessenberg form of a real matrix pair (A,B):
 | |
| *>
 | |
| *>    A = Q1*H*Z1**T,  B = Q1*T*Z1**T,
 | |
| *>
 | |
| *> as computed by SGGHRD.
 | |
| *>
 | |
| *> If JOB='S', then the Hessenberg-triangular pair (H,T) is
 | |
| *> also reduced to generalized Schur form,
 | |
| *> 
 | |
| *>    H = Q*S*Z**T,  T = Q*P*Z**T,
 | |
| *> 
 | |
| *> where Q and Z are orthogonal matrices, P is an upper triangular
 | |
| *> matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
 | |
| *> diagonal blocks.
 | |
| *>
 | |
| *> The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
 | |
| *> (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
 | |
| *> eigenvalues.
 | |
| *>
 | |
| *> Additionally, the 2-by-2 upper triangular diagonal blocks of P
 | |
| *> corresponding to 2-by-2 blocks of S are reduced to positive diagonal
 | |
| *> form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
 | |
| *> P(j,j) > 0, and P(j+1,j+1) > 0.
 | |
| *>
 | |
| *> Optionally, the orthogonal matrix Q from the generalized Schur
 | |
| *> factorization may be postmultiplied into an input matrix Q1, and the
 | |
| *> orthogonal matrix Z may be postmultiplied into an input matrix Z1.
 | |
| *> If Q1 and Z1 are the orthogonal matrices from SGGHRD that reduced
 | |
| *> the matrix pair (A,B) to generalized upper Hessenberg form, then the
 | |
| *> output matrices Q1*Q and Z1*Z are the orthogonal factors from the
 | |
| *> generalized Schur factorization of (A,B):
 | |
| *>
 | |
| *>    A = (Q1*Q)*S*(Z1*Z)**T,  B = (Q1*Q)*P*(Z1*Z)**T.
 | |
| *> 
 | |
| *> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
 | |
| *> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
 | |
| *> complex and beta real.
 | |
| *> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
 | |
| *> generalized nonsymmetric eigenvalue problem (GNEP)
 | |
| *>    A*x = lambda*B*x
 | |
| *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
 | |
| *> alternate form of the GNEP
 | |
| *>    mu*A*y = B*y.
 | |
| *> Real eigenvalues can be read directly from the generalized Schur
 | |
| *> form: 
 | |
| *>   alpha = S(i,i), beta = P(i,i).
 | |
| *>
 | |
| *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
 | |
| *>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
 | |
| *>      pp. 241--256.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOB
 | |
| *> \verbatim
 | |
| *>          JOB is CHARACTER*1
 | |
| *>          = 'E': Compute eigenvalues only;
 | |
| *>          = 'S': Compute eigenvalues and the Schur form. 
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] COMPQ
 | |
| *> \verbatim
 | |
| *>          COMPQ is CHARACTER*1
 | |
| *>          = 'N': Left Schur vectors (Q) are not computed;
 | |
| *>          = 'I': Q is initialized to the unit matrix and the matrix Q
 | |
| *>                 of left Schur vectors of (H,T) is returned;
 | |
| *>          = 'V': Q must contain an orthogonal matrix Q1 on entry and
 | |
| *>                 the product Q1*Q is returned.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] COMPZ
 | |
| *> \verbatim
 | |
| *>          COMPZ is CHARACTER*1
 | |
| *>          = 'N': Right Schur vectors (Z) are not computed;
 | |
| *>          = 'I': Z is initialized to the unit matrix and the matrix Z
 | |
| *>                 of right Schur vectors of (H,T) is returned;
 | |
| *>          = 'V': Z must contain an orthogonal matrix Z1 on entry and
 | |
| *>                 the product Z1*Z is returned.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices H, T, Q, and Z.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>          ILO and IHI mark the rows and columns of H which are in
 | |
| *>          Hessenberg form.  It is assumed that A is already upper
 | |
| *>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
 | |
| *>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] H
 | |
| *> \verbatim
 | |
| *>          H is REAL array, dimension (LDH, N)
 | |
| *>          On entry, the N-by-N upper Hessenberg matrix H.
 | |
| *>          On exit, if JOB = 'S', H contains the upper quasi-triangular
 | |
| *>          matrix S from the generalized Schur factorization.
 | |
| *>          If JOB = 'E', the diagonal blocks of H match those of S, but
 | |
| *>          the rest of H is unspecified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is INTEGER
 | |
| *>          The leading dimension of the array H.  LDH >= max( 1, N ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] T
 | |
| *> \verbatim
 | |
| *>          T is REAL array, dimension (LDT, N)
 | |
| *>          On entry, the N-by-N upper triangular matrix T.
 | |
| *>          On exit, if JOB = 'S', T contains the upper triangular
 | |
| *>          matrix P from the generalized Schur factorization;
 | |
| *>          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S
 | |
| *>          are reduced to positive diagonal form, i.e., if H(j+1,j) is
 | |
| *>          non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
 | |
| *>          T(j+1,j+1) > 0.
 | |
| *>          If JOB = 'E', the diagonal blocks of T match those of P, but
 | |
| *>          the rest of T is unspecified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= max( 1, N ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is REAL array, dimension (N)
 | |
| *>          The real parts of each scalar alpha defining an eigenvalue
 | |
| *>          of GNEP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is REAL array, dimension (N)
 | |
| *>          The imaginary parts of each scalar alpha defining an
 | |
| *>          eigenvalue of GNEP.
 | |
| *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
 | |
| *>          positive, then the j-th and (j+1)-st eigenvalues are a
 | |
| *>          complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL array, dimension (N)
 | |
| *>          The scalars beta that define the eigenvalues of GNEP.
 | |
| *>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
 | |
| *>          beta = BETA(j) represent the j-th eigenvalue of the matrix
 | |
| *>          pair (A,B), in one of the forms lambda = alpha/beta or
 | |
| *>          mu = beta/alpha.  Since either lambda or mu may overflow,
 | |
| *>          they should not, in general, be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ, N)
 | |
| *>          On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in
 | |
| *>          the reduction of (A,B) to generalized Hessenberg form.
 | |
| *>          On exit, if COMPZ = 'I', the orthogonal matrix of left Schur
 | |
| *>          vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix
 | |
| *>          of left Schur vectors of (A,B).
 | |
| *>          Not referenced if COMPZ = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.  LDQ >= 1.
 | |
| *>          If COMPQ='V' or 'I', then LDQ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ, N)
 | |
| *>          On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
 | |
| *>          the reduction of (A,B) to generalized Hessenberg form.
 | |
| *>          On exit, if COMPZ = 'I', the orthogonal matrix of
 | |
| *>          right Schur vectors of (H,T), and if COMPZ = 'V', the
 | |
| *>          orthogonal matrix of right Schur vectors of (A,B).
 | |
| *>          Not referenced if COMPZ = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1.
 | |
| *>          If COMPZ='V' or 'I', then LDZ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,N).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          = 1,...,N: the QZ iteration did not converge.  (H,T) is not
 | |
| *>                     in Schur form, but ALPHAR(i), ALPHAI(i), and
 | |
| *>                     BETA(i), i=INFO+1,...,N should be correct.
 | |
| *>          = N+1,...,2*N: the shift calculation failed.  (H,T) is not
 | |
| *>                     in Schur form, but ALPHAR(i), ALPHAI(i), and
 | |
| *>                     BETA(i), i=INFO-N+1,...,N should be correct.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2013
 | |
| *
 | |
| *> \ingroup realGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Iteration counters:
 | |
| *>
 | |
| *>  JITER  -- counts iterations.
 | |
| *>  IITER  -- counts iterations run since ILAST was last
 | |
| *>            changed.  This is therefore reset only when a 1-by-1 or
 | |
| *>            2-by-2 block deflates off the bottom.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
 | |
|      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
 | |
|      $                   LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.5.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2013
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          COMPQ, COMPZ, JOB
 | |
|       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               ALPHAI( * ), ALPHAR( * ), BETA( * ),
 | |
|      $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
 | |
|      $                   WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
| *    $                     SAFETY = 1.0E+0 )
 | |
|       REAL               HALF, ZERO, ONE, SAFETY
 | |
|       PARAMETER          ( HALF = 0.5E+0, ZERO = 0.0E+0, ONE = 1.0E+0,
 | |
|      $                   SAFETY = 1.0E+2 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ,
 | |
|      $                   LQUERY
 | |
|       INTEGER            ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
 | |
|      $                   ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
 | |
|      $                   JR, MAXIT
 | |
|       REAL               A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11,
 | |
|      $                   AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L,
 | |
|      $                   AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I,
 | |
|      $                   B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE,
 | |
|      $                   BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL,
 | |
|      $                   CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX,
 | |
|      $                   SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1,
 | |
|      $                   TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L,
 | |
|      $                   U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR,
 | |
|      $                   WR2
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               V( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANHS, SLAPY2, SLAPY3
 | |
|       EXTERNAL           LSAME, SLAMCH, SLANHS, SLAPY2, SLAPY3
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLAG2, SLARFG, SLARTG, SLASET, SLASV2, SROT,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode JOB, COMPQ, COMPZ
 | |
| *
 | |
|       IF( LSAME( JOB, 'E' ) ) THEN
 | |
|          ILSCHR = .FALSE.
 | |
|          ISCHUR = 1
 | |
|       ELSE IF( LSAME( JOB, 'S' ) ) THEN
 | |
|          ILSCHR = .TRUE.
 | |
|          ISCHUR = 2
 | |
|       ELSE
 | |
|          ISCHUR = 0
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( COMPQ, 'N' ) ) THEN
 | |
|          ILQ = .FALSE.
 | |
|          ICOMPQ = 1
 | |
|       ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
 | |
|          ILQ = .TRUE.
 | |
|          ICOMPQ = 2
 | |
|       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
 | |
|          ILQ = .TRUE.
 | |
|          ICOMPQ = 3
 | |
|       ELSE
 | |
|          ICOMPQ = 0
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( COMPZ, 'N' ) ) THEN
 | |
|          ILZ = .FALSE.
 | |
|          ICOMPZ = 1
 | |
|       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
 | |
|          ILZ = .TRUE.
 | |
|          ICOMPZ = 2
 | |
|       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
 | |
|          ILZ = .TRUE.
 | |
|          ICOMPZ = 3
 | |
|       ELSE
 | |
|          ICOMPZ = 0
 | |
|       END IF
 | |
| *
 | |
| *     Check Argument Values
 | |
| *
 | |
|       INFO = 0
 | |
|       WORK( 1 ) = MAX( 1, N )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( ISCHUR.EQ.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( ICOMPQ.EQ.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ICOMPZ.EQ.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( ILO.LT.1 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDH.LT.N ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDT.LT.N ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
 | |
|          INFO = -15
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -17
 | |
|       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -19
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SHGEQZ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          WORK( 1 ) = REAL( 1 )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize Q and Z
 | |
| *
 | |
|       IF( ICOMPQ.EQ.3 )
 | |
|      $   CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
 | |
|       IF( ICOMPZ.EQ.3 )
 | |
|      $   CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
 | |
| *
 | |
| *     Machine Constants
 | |
| *
 | |
|       IN = IHI + 1 - ILO
 | |
|       SAFMIN = SLAMCH( 'S' )
 | |
|       SAFMAX = ONE / SAFMIN
 | |
|       ULP = SLAMCH( 'E' )*SLAMCH( 'B' )
 | |
|       ANORM = SLANHS( 'F', IN, H( ILO, ILO ), LDH, WORK )
 | |
|       BNORM = SLANHS( 'F', IN, T( ILO, ILO ), LDT, WORK )
 | |
|       ATOL = MAX( SAFMIN, ULP*ANORM )
 | |
|       BTOL = MAX( SAFMIN, ULP*BNORM )
 | |
|       ASCALE = ONE / MAX( SAFMIN, ANORM )
 | |
|       BSCALE = ONE / MAX( SAFMIN, BNORM )
 | |
| *
 | |
| *     Set Eigenvalues IHI+1:N
 | |
| *
 | |
|       DO 30 J = IHI + 1, N
 | |
|          IF( T( J, J ).LT.ZERO ) THEN
 | |
|             IF( ILSCHR ) THEN
 | |
|                DO 10 JR = 1, J
 | |
|                   H( JR, J ) = -H( JR, J )
 | |
|                   T( JR, J ) = -T( JR, J )
 | |
|    10          CONTINUE
 | |
|             ELSE
 | |
|                H( J, J ) = -H( J, J )
 | |
|                T( J, J ) = -T( J, J )
 | |
|             END IF
 | |
|             IF( ILZ ) THEN
 | |
|                DO 20 JR = 1, N
 | |
|                   Z( JR, J ) = -Z( JR, J )
 | |
|    20          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          ALPHAR( J ) = H( J, J )
 | |
|          ALPHAI( J ) = ZERO
 | |
|          BETA( J ) = T( J, J )
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     If IHI < ILO, skip QZ steps
 | |
| *
 | |
|       IF( IHI.LT.ILO )
 | |
|      $   GO TO 380
 | |
| *
 | |
| *     MAIN QZ ITERATION LOOP
 | |
| *
 | |
| *     Initialize dynamic indices
 | |
| *
 | |
| *     Eigenvalues ILAST+1:N have been found.
 | |
| *        Column operations modify rows IFRSTM:whatever.
 | |
| *        Row operations modify columns whatever:ILASTM.
 | |
| *
 | |
| *     If only eigenvalues are being computed, then
 | |
| *        IFRSTM is the row of the last splitting row above row ILAST;
 | |
| *        this is always at least ILO.
 | |
| *     IITER counts iterations since the last eigenvalue was found,
 | |
| *        to tell when to use an extraordinary shift.
 | |
| *     MAXIT is the maximum number of QZ sweeps allowed.
 | |
| *
 | |
|       ILAST = IHI
 | |
|       IF( ILSCHR ) THEN
 | |
|          IFRSTM = 1
 | |
|          ILASTM = N
 | |
|       ELSE
 | |
|          IFRSTM = ILO
 | |
|          ILASTM = IHI
 | |
|       END IF
 | |
|       IITER = 0
 | |
|       ESHIFT = ZERO
 | |
|       MAXIT = 30*( IHI-ILO+1 )
 | |
| *
 | |
|       DO 360 JITER = 1, MAXIT
 | |
| *
 | |
| *        Split the matrix if possible.
 | |
| *
 | |
| *        Two tests:
 | |
| *           1: H(j,j-1)=0  or  j=ILO
 | |
| *           2: T(j,j)=0
 | |
| *
 | |
|          IF( ILAST.EQ.ILO ) THEN
 | |
| *
 | |
| *           Special case: j=ILAST
 | |
| *
 | |
|             GO TO 80
 | |
|          ELSE
 | |
|             IF( ABS( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN
 | |
|                H( ILAST, ILAST-1 ) = ZERO
 | |
|                GO TO 80
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN
 | |
|             T( ILAST, ILAST ) = ZERO
 | |
|             GO TO 70
 | |
|          END IF
 | |
| *
 | |
| *        General case: j<ILAST
 | |
| *
 | |
|          DO 60 J = ILAST - 1, ILO, -1
 | |
| *
 | |
| *           Test 1: for H(j,j-1)=0 or j=ILO
 | |
| *
 | |
|             IF( J.EQ.ILO ) THEN
 | |
|                ILAZRO = .TRUE.
 | |
|             ELSE
 | |
|                IF( ABS( H( J, J-1 ) ).LE.ATOL ) THEN
 | |
|                   H( J, J-1 ) = ZERO
 | |
|                   ILAZRO = .TRUE.
 | |
|                ELSE
 | |
|                   ILAZRO = .FALSE.
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Test 2: for T(j,j)=0
 | |
| *
 | |
|             IF( ABS( T( J, J ) ).LT.BTOL ) THEN
 | |
|                T( J, J ) = ZERO
 | |
| *
 | |
| *              Test 1a: Check for 2 consecutive small subdiagonals in A
 | |
| *
 | |
|                ILAZR2 = .FALSE.
 | |
|                IF( .NOT.ILAZRO ) THEN
 | |
|                   TEMP = ABS( H( J, J-1 ) )
 | |
|                   TEMP2 = ABS( H( J, J ) )
 | |
|                   TEMPR = MAX( TEMP, TEMP2 )
 | |
|                   IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
 | |
|                      TEMP = TEMP / TEMPR
 | |
|                      TEMP2 = TEMP2 / TEMPR
 | |
|                   END IF
 | |
|                   IF( TEMP*( ASCALE*ABS( H( J+1, J ) ) ).LE.TEMP2*
 | |
|      $                ( ASCALE*ATOL ) )ILAZR2 = .TRUE.
 | |
|                END IF
 | |
| *
 | |
| *              If both tests pass (1 & 2), i.e., the leading diagonal
 | |
| *              element of B in the block is zero, split a 1x1 block off
 | |
| *              at the top. (I.e., at the J-th row/column) The leading
 | |
| *              diagonal element of the remainder can also be zero, so
 | |
| *              this may have to be done repeatedly.
 | |
| *
 | |
|                IF( ILAZRO .OR. ILAZR2 ) THEN
 | |
|                   DO 40 JCH = J, ILAST - 1
 | |
|                      TEMP = H( JCH, JCH )
 | |
|                      CALL SLARTG( TEMP, H( JCH+1, JCH ), C, S,
 | |
|      $                            H( JCH, JCH ) )
 | |
|                      H( JCH+1, JCH ) = ZERO
 | |
|                      CALL SROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
 | |
|      $                          H( JCH+1, JCH+1 ), LDH, C, S )
 | |
|                      CALL SROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
 | |
|      $                          T( JCH+1, JCH+1 ), LDT, C, S )
 | |
|                      IF( ILQ )
 | |
|      $                  CALL SROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
 | |
|      $                             C, S )
 | |
|                      IF( ILAZR2 )
 | |
|      $                  H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
 | |
|                      ILAZR2 = .FALSE.
 | |
|                      IF( ABS( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
 | |
|                         IF( JCH+1.GE.ILAST ) THEN
 | |
|                            GO TO 80
 | |
|                         ELSE
 | |
|                            IFIRST = JCH + 1
 | |
|                            GO TO 110
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      T( JCH+1, JCH+1 ) = ZERO
 | |
|    40             CONTINUE
 | |
|                   GO TO 70
 | |
|                ELSE
 | |
| *
 | |
| *                 Only test 2 passed -- chase the zero to T(ILAST,ILAST)
 | |
| *                 Then process as in the case T(ILAST,ILAST)=0
 | |
| *
 | |
|                   DO 50 JCH = J, ILAST - 1
 | |
|                      TEMP = T( JCH, JCH+1 )
 | |
|                      CALL SLARTG( TEMP, T( JCH+1, JCH+1 ), C, S,
 | |
|      $                            T( JCH, JCH+1 ) )
 | |
|                      T( JCH+1, JCH+1 ) = ZERO
 | |
|                      IF( JCH.LT.ILASTM-1 )
 | |
|      $                  CALL SROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
 | |
|      $                             T( JCH+1, JCH+2 ), LDT, C, S )
 | |
|                      CALL SROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
 | |
|      $                          H( JCH+1, JCH-1 ), LDH, C, S )
 | |
|                      IF( ILQ )
 | |
|      $                  CALL SROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
 | |
|      $                             C, S )
 | |
|                      TEMP = H( JCH+1, JCH )
 | |
|                      CALL SLARTG( TEMP, H( JCH+1, JCH-1 ), C, S,
 | |
|      $                            H( JCH+1, JCH ) )
 | |
|                      H( JCH+1, JCH-1 ) = ZERO
 | |
|                      CALL SROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
 | |
|      $                          H( IFRSTM, JCH-1 ), 1, C, S )
 | |
|                      CALL SROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
 | |
|      $                          T( IFRSTM, JCH-1 ), 1, C, S )
 | |
|                      IF( ILZ )
 | |
|      $                  CALL SROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
 | |
|      $                             C, S )
 | |
|    50             CONTINUE
 | |
|                   GO TO 70
 | |
|                END IF
 | |
|             ELSE IF( ILAZRO ) THEN
 | |
| *
 | |
| *              Only test 1 passed -- work on J:ILAST
 | |
| *
 | |
|                IFIRST = J
 | |
|                GO TO 110
 | |
|             END IF
 | |
| *
 | |
| *           Neither test passed -- try next J
 | |
| *
 | |
|    60    CONTINUE
 | |
| *
 | |
| *        (Drop-through is "impossible")
 | |
| *
 | |
|          INFO = N + 1
 | |
|          GO TO 420
 | |
| *
 | |
| *        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
 | |
| *        1x1 block.
 | |
| *
 | |
|    70    CONTINUE
 | |
|          TEMP = H( ILAST, ILAST )
 | |
|          CALL SLARTG( TEMP, H( ILAST, ILAST-1 ), C, S,
 | |
|      $                H( ILAST, ILAST ) )
 | |
|          H( ILAST, ILAST-1 ) = ZERO
 | |
|          CALL SROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
 | |
|      $              H( IFRSTM, ILAST-1 ), 1, C, S )
 | |
|          CALL SROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
 | |
|      $              T( IFRSTM, ILAST-1 ), 1, C, S )
 | |
|          IF( ILZ )
 | |
|      $      CALL SROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
 | |
| *
 | |
| *        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI,
 | |
| *                              and BETA
 | |
| *
 | |
|    80    CONTINUE
 | |
|          IF( T( ILAST, ILAST ).LT.ZERO ) THEN
 | |
|             IF( ILSCHR ) THEN
 | |
|                DO 90 J = IFRSTM, ILAST
 | |
|                   H( J, ILAST ) = -H( J, ILAST )
 | |
|                   T( J, ILAST ) = -T( J, ILAST )
 | |
|    90          CONTINUE
 | |
|             ELSE
 | |
|                H( ILAST, ILAST ) = -H( ILAST, ILAST )
 | |
|                T( ILAST, ILAST ) = -T( ILAST, ILAST )
 | |
|             END IF
 | |
|             IF( ILZ ) THEN
 | |
|                DO 100 J = 1, N
 | |
|                   Z( J, ILAST ) = -Z( J, ILAST )
 | |
|   100          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          ALPHAR( ILAST ) = H( ILAST, ILAST )
 | |
|          ALPHAI( ILAST ) = ZERO
 | |
|          BETA( ILAST ) = T( ILAST, ILAST )
 | |
| *
 | |
| *        Go to next block -- exit if finished.
 | |
| *
 | |
|          ILAST = ILAST - 1
 | |
|          IF( ILAST.LT.ILO )
 | |
|      $      GO TO 380
 | |
| *
 | |
| *        Reset counters
 | |
| *
 | |
|          IITER = 0
 | |
|          ESHIFT = ZERO
 | |
|          IF( .NOT.ILSCHR ) THEN
 | |
|             ILASTM = ILAST
 | |
|             IF( IFRSTM.GT.ILAST )
 | |
|      $         IFRSTM = ILO
 | |
|          END IF
 | |
|          GO TO 350
 | |
| *
 | |
| *        QZ step
 | |
| *
 | |
| *        This iteration only involves rows/columns IFIRST:ILAST. We
 | |
| *        assume IFIRST < ILAST, and that the diagonal of B is non-zero.
 | |
| *
 | |
|   110    CONTINUE
 | |
|          IITER = IITER + 1
 | |
|          IF( .NOT.ILSCHR ) THEN
 | |
|             IFRSTM = IFIRST
 | |
|          END IF
 | |
| *
 | |
| *        Compute single shifts.
 | |
| *
 | |
| *        At this point, IFIRST < ILAST, and the diagonal elements of
 | |
| *        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
 | |
| *        magnitude)
 | |
| *
 | |
|          IF( ( IITER / 10 )*10.EQ.IITER ) THEN
 | |
| *
 | |
| *           Exceptional shift.  Chosen for no particularly good reason.
 | |
| *           (Single shift only.)
 | |
| *
 | |
|             IF( ( REAL( MAXIT )*SAFMIN )*ABS( H( ILAST, ILAST-1 ) ).LT.
 | |
|      $          ABS( T( ILAST-1, ILAST-1 ) ) ) THEN
 | |
|                ESHIFT = H( ILAST, ILAST-1 ) /
 | |
|      $                  T( ILAST-1, ILAST-1 )
 | |
|             ELSE
 | |
|                ESHIFT = ESHIFT + ONE / ( SAFMIN*REAL( MAXIT ) )
 | |
|             END IF
 | |
|             S1 = ONE
 | |
|             WR = ESHIFT
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Shifts based on the generalized eigenvalues of the
 | |
| *           bottom-right 2x2 block of A and B. The first eigenvalue
 | |
| *           returned by SLAG2 is the Wilkinson shift (AEP p.512),
 | |
| *
 | |
|             CALL SLAG2( H( ILAST-1, ILAST-1 ), LDH,
 | |
|      $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
 | |
|      $                  S2, WR, WR2, WI )
 | |
| *
 | |
|             IF ( ABS( (WR/S1)*T( ILAST, ILAST ) - H( ILAST, ILAST ) )
 | |
|      $         .GT. ABS( (WR2/S2)*T( ILAST, ILAST ) 
 | |
|      $         - H( ILAST, ILAST ) ) ) THEN
 | |
|                TEMP = WR
 | |
|                WR = WR2
 | |
|                WR2 = TEMP
 | |
|                TEMP = S1
 | |
|                S1 = S2
 | |
|                S2 = TEMP
 | |
|             END IF
 | |
|             TEMP = MAX( S1, SAFMIN*MAX( ONE, ABS( WR ), ABS( WI ) ) )
 | |
|             IF( WI.NE.ZERO )
 | |
|      $         GO TO 200
 | |
|          END IF
 | |
| *
 | |
| *        Fiddle with shift to avoid overflow
 | |
| *
 | |
|          TEMP = MIN( ASCALE, ONE )*( HALF*SAFMAX )
 | |
|          IF( S1.GT.TEMP ) THEN
 | |
|             SCALE = TEMP / S1
 | |
|          ELSE
 | |
|             SCALE = ONE
 | |
|          END IF
 | |
| *
 | |
|          TEMP = MIN( BSCALE, ONE )*( HALF*SAFMAX )
 | |
|          IF( ABS( WR ).GT.TEMP )
 | |
|      $      SCALE = MIN( SCALE, TEMP / ABS( WR ) )
 | |
|          S1 = SCALE*S1
 | |
|          WR = SCALE*WR
 | |
| *
 | |
| *        Now check for two consecutive small subdiagonals.
 | |
| *
 | |
|          DO 120 J = ILAST - 1, IFIRST + 1, -1
 | |
|             ISTART = J
 | |
|             TEMP = ABS( S1*H( J, J-1 ) )
 | |
|             TEMP2 = ABS( S1*H( J, J )-WR*T( J, J ) )
 | |
|             TEMPR = MAX( TEMP, TEMP2 )
 | |
|             IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
 | |
|                TEMP = TEMP / TEMPR
 | |
|                TEMP2 = TEMP2 / TEMPR
 | |
|             END IF
 | |
|             IF( ABS( ( ASCALE*H( J+1, J ) )*TEMP ).LE.( ASCALE*ATOL )*
 | |
|      $          TEMP2 )GO TO 130
 | |
|   120    CONTINUE
 | |
| *
 | |
|          ISTART = IFIRST
 | |
|   130    CONTINUE
 | |
| *
 | |
| *        Do an implicit single-shift QZ sweep.
 | |
| *
 | |
| *        Initial Q
 | |
| *
 | |
|          TEMP = S1*H( ISTART, ISTART ) - WR*T( ISTART, ISTART )
 | |
|          TEMP2 = S1*H( ISTART+1, ISTART )
 | |
|          CALL SLARTG( TEMP, TEMP2, C, S, TEMPR )
 | |
| *
 | |
| *        Sweep
 | |
| *
 | |
|          DO 190 J = ISTART, ILAST - 1
 | |
|             IF( J.GT.ISTART ) THEN
 | |
|                TEMP = H( J, J-1 )
 | |
|                CALL SLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
 | |
|                H( J+1, J-1 ) = ZERO
 | |
|             END IF
 | |
| *
 | |
|             DO 140 JC = J, ILASTM
 | |
|                TEMP = C*H( J, JC ) + S*H( J+1, JC )
 | |
|                H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
 | |
|                H( J, JC ) = TEMP
 | |
|                TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
 | |
|                T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
 | |
|                T( J, JC ) = TEMP2
 | |
|   140       CONTINUE
 | |
|             IF( ILQ ) THEN
 | |
|                DO 150 JR = 1, N
 | |
|                   TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
 | |
|                   Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
 | |
|                   Q( JR, J ) = TEMP
 | |
|   150          CONTINUE
 | |
|             END IF
 | |
| *
 | |
|             TEMP = T( J+1, J+1 )
 | |
|             CALL SLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
 | |
|             T( J+1, J ) = ZERO
 | |
| *
 | |
|             DO 160 JR = IFRSTM, MIN( J+2, ILAST )
 | |
|                TEMP = C*H( JR, J+1 ) + S*H( JR, J )
 | |
|                H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
 | |
|                H( JR, J+1 ) = TEMP
 | |
|   160       CONTINUE
 | |
|             DO 170 JR = IFRSTM, J
 | |
|                TEMP = C*T( JR, J+1 ) + S*T( JR, J )
 | |
|                T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
 | |
|                T( JR, J+1 ) = TEMP
 | |
|   170       CONTINUE
 | |
|             IF( ILZ ) THEN
 | |
|                DO 180 JR = 1, N
 | |
|                   TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
 | |
|                   Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
 | |
|                   Z( JR, J+1 ) = TEMP
 | |
|   180          CONTINUE
 | |
|             END IF
 | |
|   190    CONTINUE
 | |
| *
 | |
|          GO TO 350
 | |
| *
 | |
| *        Use Francis double-shift
 | |
| *
 | |
| *        Note: the Francis double-shift should work with real shifts,
 | |
| *              but only if the block is at least 3x3.
 | |
| *              This code may break if this point is reached with
 | |
| *              a 2x2 block with real eigenvalues.
 | |
| *
 | |
|   200    CONTINUE
 | |
|          IF( IFIRST+1.EQ.ILAST ) THEN
 | |
| *
 | |
| *           Special case -- 2x2 block with complex eigenvectors
 | |
| *
 | |
| *           Step 1: Standardize, that is, rotate so that
 | |
| *
 | |
| *                       ( B11  0  )
 | |
| *                   B = (         )  with B11 non-negative.
 | |
| *                       (  0  B22 )
 | |
| *
 | |
|             CALL SLASV2( T( ILAST-1, ILAST-1 ), T( ILAST-1, ILAST ),
 | |
|      $                   T( ILAST, ILAST ), B22, B11, SR, CR, SL, CL )
 | |
| *
 | |
|             IF( B11.LT.ZERO ) THEN
 | |
|                CR = -CR
 | |
|                SR = -SR
 | |
|                B11 = -B11
 | |
|                B22 = -B22
 | |
|             END IF
 | |
| *
 | |
|             CALL SROT( ILASTM+1-IFIRST, H( ILAST-1, ILAST-1 ), LDH,
 | |
|      $                 H( ILAST, ILAST-1 ), LDH, CL, SL )
 | |
|             CALL SROT( ILAST+1-IFRSTM, H( IFRSTM, ILAST-1 ), 1,
 | |
|      $                 H( IFRSTM, ILAST ), 1, CR, SR )
 | |
| *
 | |
|             IF( ILAST.LT.ILASTM )
 | |
|      $         CALL SROT( ILASTM-ILAST, T( ILAST-1, ILAST+1 ), LDT,
 | |
|      $                    T( ILAST, ILAST+1 ), LDT, CL, SL )
 | |
|             IF( IFRSTM.LT.ILAST-1 )
 | |
|      $         CALL SROT( IFIRST-IFRSTM, T( IFRSTM, ILAST-1 ), 1,
 | |
|      $                    T( IFRSTM, ILAST ), 1, CR, SR )
 | |
| *
 | |
|             IF( ILQ )
 | |
|      $         CALL SROT( N, Q( 1, ILAST-1 ), 1, Q( 1, ILAST ), 1, CL,
 | |
|      $                    SL )
 | |
|             IF( ILZ )
 | |
|      $         CALL SROT( N, Z( 1, ILAST-1 ), 1, Z( 1, ILAST ), 1, CR,
 | |
|      $                    SR )
 | |
| *
 | |
|             T( ILAST-1, ILAST-1 ) = B11
 | |
|             T( ILAST-1, ILAST ) = ZERO
 | |
|             T( ILAST, ILAST-1 ) = ZERO
 | |
|             T( ILAST, ILAST ) = B22
 | |
| *
 | |
| *           If B22 is negative, negate column ILAST
 | |
| *
 | |
|             IF( B22.LT.ZERO ) THEN
 | |
|                DO 210 J = IFRSTM, ILAST
 | |
|                   H( J, ILAST ) = -H( J, ILAST )
 | |
|                   T( J, ILAST ) = -T( J, ILAST )
 | |
|   210          CONTINUE
 | |
| *
 | |
|                IF( ILZ ) THEN
 | |
|                   DO 220 J = 1, N
 | |
|                      Z( J, ILAST ) = -Z( J, ILAST )
 | |
|   220             CONTINUE
 | |
|                END IF
 | |
|                B22 = -B22
 | |
|             END IF
 | |
| *
 | |
| *           Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.)
 | |
| *
 | |
| *           Recompute shift
 | |
| *
 | |
|             CALL SLAG2( H( ILAST-1, ILAST-1 ), LDH,
 | |
|      $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
 | |
|      $                  TEMP, WR, TEMP2, WI )
 | |
| *
 | |
| *           If standardization has perturbed the shift onto real line,
 | |
| *           do another (real single-shift) QR step.
 | |
| *
 | |
|             IF( WI.EQ.ZERO )
 | |
|      $         GO TO 350
 | |
|             S1INV = ONE / S1
 | |
| *
 | |
| *           Do EISPACK (QZVAL) computation of alpha and beta
 | |
| *
 | |
|             A11 = H( ILAST-1, ILAST-1 )
 | |
|             A21 = H( ILAST, ILAST-1 )
 | |
|             A12 = H( ILAST-1, ILAST )
 | |
|             A22 = H( ILAST, ILAST )
 | |
| *
 | |
| *           Compute complex Givens rotation on right
 | |
| *           (Assume some element of C = (sA - wB) > unfl )
 | |
| *                            __
 | |
| *           (sA - wB) ( CZ   -SZ )
 | |
| *                     ( SZ    CZ )
 | |
| *
 | |
|             C11R = S1*A11 - WR*B11
 | |
|             C11I = -WI*B11
 | |
|             C12 = S1*A12
 | |
|             C21 = S1*A21
 | |
|             C22R = S1*A22 - WR*B22
 | |
|             C22I = -WI*B22
 | |
| *
 | |
|             IF( ABS( C11R )+ABS( C11I )+ABS( C12 ).GT.ABS( C21 )+
 | |
|      $          ABS( C22R )+ABS( C22I ) ) THEN
 | |
|                T1 = SLAPY3( C12, C11R, C11I )
 | |
|                CZ = C12 / T1
 | |
|                SZR = -C11R / T1
 | |
|                SZI = -C11I / T1
 | |
|             ELSE
 | |
|                CZ = SLAPY2( C22R, C22I )
 | |
|                IF( CZ.LE.SAFMIN ) THEN
 | |
|                   CZ = ZERO
 | |
|                   SZR = ONE
 | |
|                   SZI = ZERO
 | |
|                ELSE
 | |
|                   TEMPR = C22R / CZ
 | |
|                   TEMPI = C22I / CZ
 | |
|                   T1 = SLAPY2( CZ, C21 )
 | |
|                   CZ = CZ / T1
 | |
|                   SZR = -C21*TEMPR / T1
 | |
|                   SZI = C21*TEMPI / T1
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Compute Givens rotation on left
 | |
| *
 | |
| *           (  CQ   SQ )
 | |
| *           (  __      )  A or B
 | |
| *           ( -SQ   CQ )
 | |
| *
 | |
|             AN = ABS( A11 ) + ABS( A12 ) + ABS( A21 ) + ABS( A22 )
 | |
|             BN = ABS( B11 ) + ABS( B22 )
 | |
|             WABS = ABS( WR ) + ABS( WI )
 | |
|             IF( S1*AN.GT.WABS*BN ) THEN
 | |
|                CQ = CZ*B11
 | |
|                SQR = SZR*B22
 | |
|                SQI = -SZI*B22
 | |
|             ELSE
 | |
|                A1R = CZ*A11 + SZR*A12
 | |
|                A1I = SZI*A12
 | |
|                A2R = CZ*A21 + SZR*A22
 | |
|                A2I = SZI*A22
 | |
|                CQ = SLAPY2( A1R, A1I )
 | |
|                IF( CQ.LE.SAFMIN ) THEN
 | |
|                   CQ = ZERO
 | |
|                   SQR = ONE
 | |
|                   SQI = ZERO
 | |
|                ELSE
 | |
|                   TEMPR = A1R / CQ
 | |
|                   TEMPI = A1I / CQ
 | |
|                   SQR = TEMPR*A2R + TEMPI*A2I
 | |
|                   SQI = TEMPI*A2R - TEMPR*A2I
 | |
|                END IF
 | |
|             END IF
 | |
|             T1 = SLAPY3( CQ, SQR, SQI )
 | |
|             CQ = CQ / T1
 | |
|             SQR = SQR / T1
 | |
|             SQI = SQI / T1
 | |
| *
 | |
| *           Compute diagonal elements of QBZ
 | |
| *
 | |
|             TEMPR = SQR*SZR - SQI*SZI
 | |
|             TEMPI = SQR*SZI + SQI*SZR
 | |
|             B1R = CQ*CZ*B11 + TEMPR*B22
 | |
|             B1I = TEMPI*B22
 | |
|             B1A = SLAPY2( B1R, B1I )
 | |
|             B2R = CQ*CZ*B22 + TEMPR*B11
 | |
|             B2I = -TEMPI*B11
 | |
|             B2A = SLAPY2( B2R, B2I )
 | |
| *
 | |
| *           Normalize so beta > 0, and Im( alpha1 ) > 0
 | |
| *
 | |
|             BETA( ILAST-1 ) = B1A
 | |
|             BETA( ILAST ) = B2A
 | |
|             ALPHAR( ILAST-1 ) = ( WR*B1A )*S1INV
 | |
|             ALPHAI( ILAST-1 ) = ( WI*B1A )*S1INV
 | |
|             ALPHAR( ILAST ) = ( WR*B2A )*S1INV
 | |
|             ALPHAI( ILAST ) = -( WI*B2A )*S1INV
 | |
| *
 | |
| *           Step 3: Go to next block -- exit if finished.
 | |
| *
 | |
|             ILAST = IFIRST - 1
 | |
|             IF( ILAST.LT.ILO )
 | |
|      $         GO TO 380
 | |
| *
 | |
| *           Reset counters
 | |
| *
 | |
|             IITER = 0
 | |
|             ESHIFT = ZERO
 | |
|             IF( .NOT.ILSCHR ) THEN
 | |
|                ILASTM = ILAST
 | |
|                IF( IFRSTM.GT.ILAST )
 | |
|      $            IFRSTM = ILO
 | |
|             END IF
 | |
|             GO TO 350
 | |
|          ELSE
 | |
| *
 | |
| *           Usual case: 3x3 or larger block, using Francis implicit
 | |
| *                       double-shift
 | |
| *
 | |
| *                                    2
 | |
| *           Eigenvalue equation is  w  - c w + d = 0,
 | |
| *
 | |
| *                                         -1 2        -1
 | |
| *           so compute 1st column of  (A B  )  - c A B   + d
 | |
| *           using the formula in QZIT (from EISPACK)
 | |
| *
 | |
| *           We assume that the block is at least 3x3
 | |
| *
 | |
|             AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
 | |
|      $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
 | |
|             AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
 | |
|      $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
 | |
|             AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
 | |
|      $             ( BSCALE*T( ILAST, ILAST ) )
 | |
|             AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
 | |
|      $             ( BSCALE*T( ILAST, ILAST ) )
 | |
|             U12 = T( ILAST-1, ILAST ) / T( ILAST, ILAST )
 | |
|             AD11L = ( ASCALE*H( IFIRST, IFIRST ) ) /
 | |
|      $              ( BSCALE*T( IFIRST, IFIRST ) )
 | |
|             AD21L = ( ASCALE*H( IFIRST+1, IFIRST ) ) /
 | |
|      $              ( BSCALE*T( IFIRST, IFIRST ) )
 | |
|             AD12L = ( ASCALE*H( IFIRST, IFIRST+1 ) ) /
 | |
|      $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
 | |
|             AD22L = ( ASCALE*H( IFIRST+1, IFIRST+1 ) ) /
 | |
|      $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
 | |
|             AD32L = ( ASCALE*H( IFIRST+2, IFIRST+1 ) ) /
 | |
|      $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
 | |
|             U12L = T( IFIRST, IFIRST+1 ) / T( IFIRST+1, IFIRST+1 )
 | |
| *
 | |
|             V( 1 ) = ( AD11-AD11L )*( AD22-AD11L ) - AD12*AD21 +
 | |
|      $               AD21*U12*AD11L + ( AD12L-AD11L*U12L )*AD21L
 | |
|             V( 2 ) = ( ( AD22L-AD11L )-AD21L*U12L-( AD11-AD11L )-
 | |
|      $               ( AD22-AD11L )+AD21*U12 )*AD21L
 | |
|             V( 3 ) = AD32L*AD21L
 | |
| *
 | |
|             ISTART = IFIRST
 | |
| *
 | |
|             CALL SLARFG( 3, V( 1 ), V( 2 ), 1, TAU )
 | |
|             V( 1 ) = ONE
 | |
| *
 | |
| *           Sweep
 | |
| *
 | |
|             DO 290 J = ISTART, ILAST - 2
 | |
| *
 | |
| *              All but last elements: use 3x3 Householder transforms.
 | |
| *
 | |
| *              Zero (j-1)st column of A
 | |
| *
 | |
|                IF( J.GT.ISTART ) THEN
 | |
|                   V( 1 ) = H( J, J-1 )
 | |
|                   V( 2 ) = H( J+1, J-1 )
 | |
|                   V( 3 ) = H( J+2, J-1 )
 | |
| *
 | |
|                   CALL SLARFG( 3, H( J, J-1 ), V( 2 ), 1, TAU )
 | |
|                   V( 1 ) = ONE
 | |
|                   H( J+1, J-1 ) = ZERO
 | |
|                   H( J+2, J-1 ) = ZERO
 | |
|                END IF
 | |
| *
 | |
|                DO 230 JC = J, ILASTM
 | |
|                   TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )*
 | |
|      $                   H( J+2, JC ) )
 | |
|                   H( J, JC ) = H( J, JC ) - TEMP
 | |
|                   H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 )
 | |
|                   H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 )
 | |
|                   TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )*
 | |
|      $                    T( J+2, JC ) )
 | |
|                   T( J, JC ) = T( J, JC ) - TEMP2
 | |
|                   T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 )
 | |
|                   T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 )
 | |
|   230          CONTINUE
 | |
|                IF( ILQ ) THEN
 | |
|                   DO 240 JR = 1, N
 | |
|                      TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )*
 | |
|      $                      Q( JR, J+2 ) )
 | |
|                      Q( JR, J ) = Q( JR, J ) - TEMP
 | |
|                      Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 )
 | |
|                      Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 )
 | |
|   240             CONTINUE
 | |
|                END IF
 | |
| *
 | |
| *              Zero j-th column of B (see SLAGBC for details)
 | |
| *
 | |
| *              Swap rows to pivot
 | |
| *
 | |
|                ILPIVT = .FALSE.
 | |
|                TEMP = MAX( ABS( T( J+1, J+1 ) ), ABS( T( J+1, J+2 ) ) )
 | |
|                TEMP2 = MAX( ABS( T( J+2, J+1 ) ), ABS( T( J+2, J+2 ) ) )
 | |
|                IF( MAX( TEMP, TEMP2 ).LT.SAFMIN ) THEN
 | |
|                   SCALE = ZERO
 | |
|                   U1 = ONE
 | |
|                   U2 = ZERO
 | |
|                   GO TO 250
 | |
|                ELSE IF( TEMP.GE.TEMP2 ) THEN
 | |
|                   W11 = T( J+1, J+1 )
 | |
|                   W21 = T( J+2, J+1 )
 | |
|                   W12 = T( J+1, J+2 )
 | |
|                   W22 = T( J+2, J+2 )
 | |
|                   U1 = T( J+1, J )
 | |
|                   U2 = T( J+2, J )
 | |
|                ELSE
 | |
|                   W21 = T( J+1, J+1 )
 | |
|                   W11 = T( J+2, J+1 )
 | |
|                   W22 = T( J+1, J+2 )
 | |
|                   W12 = T( J+2, J+2 )
 | |
|                   U2 = T( J+1, J )
 | |
|                   U1 = T( J+2, J )
 | |
|                END IF
 | |
| *
 | |
| *              Swap columns if nec.
 | |
| *
 | |
|                IF( ABS( W12 ).GT.ABS( W11 ) ) THEN
 | |
|                   ILPIVT = .TRUE.
 | |
|                   TEMP = W12
 | |
|                   TEMP2 = W22
 | |
|                   W12 = W11
 | |
|                   W22 = W21
 | |
|                   W11 = TEMP
 | |
|                   W21 = TEMP2
 | |
|                END IF
 | |
| *
 | |
| *              LU-factor
 | |
| *
 | |
|                TEMP = W21 / W11
 | |
|                U2 = U2 - TEMP*U1
 | |
|                W22 = W22 - TEMP*W12
 | |
|                W21 = ZERO
 | |
| *
 | |
| *              Compute SCALE
 | |
| *
 | |
|                SCALE = ONE
 | |
|                IF( ABS( W22 ).LT.SAFMIN ) THEN
 | |
|                   SCALE = ZERO
 | |
|                   U2 = ONE
 | |
|                   U1 = -W12 / W11
 | |
|                   GO TO 250
 | |
|                END IF
 | |
|                IF( ABS( W22 ).LT.ABS( U2 ) )
 | |
|      $            SCALE = ABS( W22 / U2 )
 | |
|                IF( ABS( W11 ).LT.ABS( U1 ) )
 | |
|      $            SCALE = MIN( SCALE, ABS( W11 / U1 ) )
 | |
| *
 | |
| *              Solve
 | |
| *
 | |
|                U2 = ( SCALE*U2 ) / W22
 | |
|                U1 = ( SCALE*U1-W12*U2 ) / W11
 | |
| *
 | |
|   250          CONTINUE
 | |
|                IF( ILPIVT ) THEN
 | |
|                   TEMP = U2
 | |
|                   U2 = U1
 | |
|                   U1 = TEMP
 | |
|                END IF
 | |
| *
 | |
| *              Compute Householder Vector
 | |
| *
 | |
|                T1 = SQRT( SCALE**2+U1**2+U2**2 )
 | |
|                TAU = ONE + SCALE / T1
 | |
|                VS = -ONE / ( SCALE+T1 )
 | |
|                V( 1 ) = ONE
 | |
|                V( 2 ) = VS*U1
 | |
|                V( 3 ) = VS*U2
 | |
| *
 | |
| *              Apply transformations from the right.
 | |
| *
 | |
|                DO 260 JR = IFRSTM, MIN( J+3, ILAST )
 | |
|                   TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )*
 | |
|      $                   H( JR, J+2 ) )
 | |
|                   H( JR, J ) = H( JR, J ) - TEMP
 | |
|                   H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 )
 | |
|                   H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 )
 | |
|   260          CONTINUE
 | |
|                DO 270 JR = IFRSTM, J + 2
 | |
|                   TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )*
 | |
|      $                   T( JR, J+2 ) )
 | |
|                   T( JR, J ) = T( JR, J ) - TEMP
 | |
|                   T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 )
 | |
|                   T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 )
 | |
|   270          CONTINUE
 | |
|                IF( ILZ ) THEN
 | |
|                   DO 280 JR = 1, N
 | |
|                      TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )*
 | |
|      $                      Z( JR, J+2 ) )
 | |
|                      Z( JR, J ) = Z( JR, J ) - TEMP
 | |
|                      Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 )
 | |
|                      Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 )
 | |
|   280             CONTINUE
 | |
|                END IF
 | |
|                T( J+1, J ) = ZERO
 | |
|                T( J+2, J ) = ZERO
 | |
|   290       CONTINUE
 | |
| *
 | |
| *           Last elements: Use Givens rotations
 | |
| *
 | |
| *           Rotations from the left
 | |
| *
 | |
|             J = ILAST - 1
 | |
|             TEMP = H( J, J-1 )
 | |
|             CALL SLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
 | |
|             H( J+1, J-1 ) = ZERO
 | |
| *
 | |
|             DO 300 JC = J, ILASTM
 | |
|                TEMP = C*H( J, JC ) + S*H( J+1, JC )
 | |
|                H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
 | |
|                H( J, JC ) = TEMP
 | |
|                TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
 | |
|                T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
 | |
|                T( J, JC ) = TEMP2
 | |
|   300       CONTINUE
 | |
|             IF( ILQ ) THEN
 | |
|                DO 310 JR = 1, N
 | |
|                   TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
 | |
|                   Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
 | |
|                   Q( JR, J ) = TEMP
 | |
|   310          CONTINUE
 | |
|             END IF
 | |
| *
 | |
| *           Rotations from the right.
 | |
| *
 | |
|             TEMP = T( J+1, J+1 )
 | |
|             CALL SLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
 | |
|             T( J+1, J ) = ZERO
 | |
| *
 | |
|             DO 320 JR = IFRSTM, ILAST
 | |
|                TEMP = C*H( JR, J+1 ) + S*H( JR, J )
 | |
|                H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
 | |
|                H( JR, J+1 ) = TEMP
 | |
|   320       CONTINUE
 | |
|             DO 330 JR = IFRSTM, ILAST - 1
 | |
|                TEMP = C*T( JR, J+1 ) + S*T( JR, J )
 | |
|                T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
 | |
|                T( JR, J+1 ) = TEMP
 | |
|   330       CONTINUE
 | |
|             IF( ILZ ) THEN
 | |
|                DO 340 JR = 1, N
 | |
|                   TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
 | |
|                   Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
 | |
|                   Z( JR, J+1 ) = TEMP
 | |
|   340          CONTINUE
 | |
|             END IF
 | |
| *
 | |
| *           End of Double-Shift code
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|          GO TO 350
 | |
| *
 | |
| *        End of iteration loop
 | |
| *
 | |
|   350    CONTINUE
 | |
|   360 CONTINUE
 | |
| *
 | |
| *     Drop-through = non-convergence
 | |
| *
 | |
|       INFO = ILAST
 | |
|       GO TO 420
 | |
| *
 | |
| *     Successful completion of all QZ steps
 | |
| *
 | |
|   380 CONTINUE
 | |
| *
 | |
| *     Set Eigenvalues 1:ILO-1
 | |
| *
 | |
|       DO 410 J = 1, ILO - 1
 | |
|          IF( T( J, J ).LT.ZERO ) THEN
 | |
|             IF( ILSCHR ) THEN
 | |
|                DO 390 JR = 1, J
 | |
|                   H( JR, J ) = -H( JR, J )
 | |
|                   T( JR, J ) = -T( JR, J )
 | |
|   390          CONTINUE
 | |
|             ELSE
 | |
|                H( J, J ) = -H( J, J )
 | |
|                T( J, J ) = -T( J, J )
 | |
|             END IF
 | |
|             IF( ILZ ) THEN
 | |
|                DO 400 JR = 1, N
 | |
|                   Z( JR, J ) = -Z( JR, J )
 | |
|   400          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          ALPHAR( J ) = H( J, J )
 | |
|          ALPHAI( J ) = ZERO
 | |
|          BETA( J ) = T( J, J )
 | |
|   410 CONTINUE
 | |
| *
 | |
| *     Normal Termination
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Exit (other than argument error) -- return optimal workspace size
 | |
| *
 | |
|   420 CONTINUE
 | |
|       WORK( 1 ) = REAL( N )
 | |
|       RETURN
 | |
| *
 | |
| *     End of SHGEQZ
 | |
| *
 | |
|       END
 |