334 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			334 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SGTSV computes the solution to system of linear equations A * X = B for GT matrices <b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGTSV + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtsv.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtsv.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtsv.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDB, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               B( LDB, * ), D( * ), DL( * ), DU( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGTSV  solves the equation
 | |
| *>
 | |
| *>    A*X = B,
 | |
| *>
 | |
| *> where A is an n by n tridiagonal matrix, by Gaussian elimination with
 | |
| *> partial pivoting.
 | |
| *>
 | |
| *> Note that the equation  A**T*X = B  may be solved by interchanging the
 | |
| *> order of the arguments DU and DL.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DL
 | |
| *> \verbatim
 | |
| *>          DL is REAL array, dimension (N-1)
 | |
| *>          On entry, DL must contain the (n-1) sub-diagonal elements of
 | |
| *>          A.
 | |
| *>
 | |
| *>          On exit, DL is overwritten by the (n-2) elements of the
 | |
| *>          second super-diagonal of the upper triangular matrix U from
 | |
| *>          the LU factorization of A, in DL(1), ..., DL(n-2).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          On entry, D must contain the diagonal elements of A.
 | |
| *>
 | |
| *>          On exit, D is overwritten by the n diagonal elements of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DU
 | |
| *> \verbatim
 | |
| *>          DU is REAL array, dimension (N-1)
 | |
| *>          On entry, DU must contain the (n-1) super-diagonal elements
 | |
| *>          of A.
 | |
| *>
 | |
| *>          On exit, DU is overwritten by the (n-1) elements of the first
 | |
| *>          super-diagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,NRHS)
 | |
| *>          On entry, the N by NRHS matrix of right hand side matrix B.
 | |
| *>          On exit, if INFO = 0, the N by NRHS solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0: if INFO = i, U(i,i) is exactly zero, and the solution
 | |
| *>               has not been computed.  The factorization has not been
 | |
| *>               completed unless i = N.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realGTsolve
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDB, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               B( LDB, * ), D( * ), DL( * ), DU( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       REAL               FACT, TEMP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGTSV ', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( NRHS.EQ.1 ) THEN
 | |
|          DO 10 I = 1, N - 2
 | |
|             IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | |
| *
 | |
| *              No row interchange required
 | |
| *
 | |
|                IF( D( I ).NE.ZERO ) THEN
 | |
|                   FACT = DL( I ) / D( I )
 | |
|                   D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | |
|                   B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
 | |
|                ELSE
 | |
|                   INFO = I
 | |
|                   RETURN
 | |
|                END IF
 | |
|                DL( I ) = ZERO
 | |
|             ELSE
 | |
| *
 | |
| *              Interchange rows I and I+1
 | |
| *
 | |
|                FACT = D( I ) / DL( I )
 | |
|                D( I ) = DL( I )
 | |
|                TEMP = D( I+1 )
 | |
|                D( I+1 ) = DU( I ) - FACT*TEMP
 | |
|                DL( I ) = DU( I+1 )
 | |
|                DU( I+1 ) = -FACT*DL( I )
 | |
|                DU( I ) = TEMP
 | |
|                TEMP = B( I, 1 )
 | |
|                B( I, 1 ) = B( I+1, 1 )
 | |
|                B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
|          IF( N.GT.1 ) THEN
 | |
|             I = N - 1
 | |
|             IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | |
|                IF( D( I ).NE.ZERO ) THEN
 | |
|                   FACT = DL( I ) / D( I )
 | |
|                   D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | |
|                   B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
 | |
|                ELSE
 | |
|                   INFO = I
 | |
|                   RETURN
 | |
|                END IF
 | |
|             ELSE
 | |
|                FACT = D( I ) / DL( I )
 | |
|                D( I ) = DL( I )
 | |
|                TEMP = D( I+1 )
 | |
|                D( I+1 ) = DU( I ) - FACT*TEMP
 | |
|                DU( I ) = TEMP
 | |
|                TEMP = B( I, 1 )
 | |
|                B( I, 1 ) = B( I+1, 1 )
 | |
|                B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( D( N ).EQ.ZERO ) THEN
 | |
|             INFO = N
 | |
|             RETURN
 | |
|          END IF
 | |
|       ELSE
 | |
|          DO 40 I = 1, N - 2
 | |
|             IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | |
| *
 | |
| *              No row interchange required
 | |
| *
 | |
|                IF( D( I ).NE.ZERO ) THEN
 | |
|                   FACT = DL( I ) / D( I )
 | |
|                   D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | |
|                   DO 20 J = 1, NRHS
 | |
|                      B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
 | |
|    20             CONTINUE
 | |
|                ELSE
 | |
|                   INFO = I
 | |
|                   RETURN
 | |
|                END IF
 | |
|                DL( I ) = ZERO
 | |
|             ELSE
 | |
| *
 | |
| *              Interchange rows I and I+1
 | |
| *
 | |
|                FACT = D( I ) / DL( I )
 | |
|                D( I ) = DL( I )
 | |
|                TEMP = D( I+1 )
 | |
|                D( I+1 ) = DU( I ) - FACT*TEMP
 | |
|                DL( I ) = DU( I+1 )
 | |
|                DU( I+1 ) = -FACT*DL( I )
 | |
|                DU( I ) = TEMP
 | |
|                DO 30 J = 1, NRHS
 | |
|                   TEMP = B( I, J )
 | |
|                   B( I, J ) = B( I+1, J )
 | |
|                   B( I+1, J ) = TEMP - FACT*B( I+1, J )
 | |
|    30          CONTINUE
 | |
|             END IF
 | |
|    40    CONTINUE
 | |
|          IF( N.GT.1 ) THEN
 | |
|             I = N - 1
 | |
|             IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
 | |
|                IF( D( I ).NE.ZERO ) THEN
 | |
|                   FACT = DL( I ) / D( I )
 | |
|                   D( I+1 ) = D( I+1 ) - FACT*DU( I )
 | |
|                   DO 50 J = 1, NRHS
 | |
|                      B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
 | |
|    50             CONTINUE
 | |
|                ELSE
 | |
|                   INFO = I
 | |
|                   RETURN
 | |
|                END IF
 | |
|             ELSE
 | |
|                FACT = D( I ) / DL( I )
 | |
|                D( I ) = DL( I )
 | |
|                TEMP = D( I+1 )
 | |
|                D( I+1 ) = DU( I ) - FACT*TEMP
 | |
|                DU( I ) = TEMP
 | |
|                DO 60 J = 1, NRHS
 | |
|                   TEMP = B( I, J )
 | |
|                   B( I, J ) = B( I+1, J )
 | |
|                   B( I+1, J ) = TEMP - FACT*B( I+1, J )
 | |
|    60          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( D( N ).EQ.ZERO ) THEN
 | |
|             INFO = N
 | |
|             RETURN
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Back solve with the matrix U from the factorization.
 | |
| *
 | |
|       IF( NRHS.LE.2 ) THEN
 | |
|          J = 1
 | |
|    70    CONTINUE
 | |
|          B( N, J ) = B( N, J ) / D( N )
 | |
|          IF( N.GT.1 )
 | |
|      $      B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
 | |
|          DO 80 I = N - 2, 1, -1
 | |
|             B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
 | |
|      $                  B( I+2, J ) ) / D( I )
 | |
|    80    CONTINUE
 | |
|          IF( J.LT.NRHS ) THEN
 | |
|             J = J + 1
 | |
|             GO TO 70
 | |
|          END IF
 | |
|       ELSE
 | |
|          DO 100 J = 1, NRHS
 | |
|             B( N, J ) = B( N, J ) / D( N )
 | |
|             IF( N.GT.1 )
 | |
|      $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
 | |
|      $                       D( N-1 )
 | |
|             DO 90 I = N - 2, 1, -1
 | |
|                B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
 | |
|      $                     B( I+2, J ) ) / D( I )
 | |
|    90       CONTINUE
 | |
|   100    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGTSV
 | |
| *
 | |
|       END
 |