716 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			716 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DORCSD2BY1
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DORCSD2BY1 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorcsd2by1.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorcsd2by1.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorcsd2by1.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
 | |
| *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
 | |
| *                              LDV1T, WORK, LWORK, IWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBU1, JOBU2, JOBV1T
 | |
| *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
 | |
| *      $                   M, P, Q
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   THETA(*)
 | |
| *       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
 | |
| *      $                   X11(LDX11,*), X21(LDX21,*)
 | |
| *       INTEGER            IWORK(*)
 | |
| *       ..
 | |
| *    
 | |
| * 
 | |
| *> \par Purpose:
 | |
| *> =============
 | |
| *>
 | |
| *>\verbatim
 | |
| *> Purpose:
 | |
| *> ========
 | |
| *>
 | |
| *> DORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
 | |
| *> orthonormal columns that has been partitioned into a 2-by-1 block
 | |
| *> structure:
 | |
| *>
 | |
| *>                                [  I  0  0 ]
 | |
| *>                                [  0  C  0 ]
 | |
| *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
 | |
| *>      X = [-----] = [---------] [----------] V1**T .
 | |
| *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
 | |
| *>                                [  0  S  0 ]
 | |
| *>                                [  0  0  I ]
 | |
| *> 
 | |
| *> X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,
 | |
| *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
 | |
| *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
 | |
| *> which R = MIN(P,M-P,Q,M-Q).
 | |
| *>
 | |
| *>\endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBU1
 | |
| *> \verbatim
 | |
| *>          JOBU1 is CHARACTER
 | |
| *>           = 'Y':      U1 is computed;
 | |
| *>           otherwise:  U1 is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBU2
 | |
| *> \verbatim
 | |
| *>          JOBU2 is CHARACTER
 | |
| *>           = 'Y':      U2 is computed;
 | |
| *>           otherwise:  U2 is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV1T
 | |
| *> \verbatim
 | |
| *>          JOBV1T is CHARACTER
 | |
| *>           = 'Y':      V1T is computed;
 | |
| *>           otherwise:  V1T is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           The number of rows and columns in X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>           The number of rows in X11 and X12. 0 <= P <= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q
 | |
| *> \verbatim
 | |
| *>          Q is INTEGER
 | |
| *>           The number of columns in X11 and X21. 0 <= Q <= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X11
 | |
| *> \verbatim
 | |
| *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
 | |
| *>           On entry, part of the orthogonal matrix whose CSD is
 | |
| *>           desired.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX11
 | |
| *> \verbatim
 | |
| *>          LDX11 is INTEGER
 | |
| *>           The leading dimension of X11. LDX11 >= MAX(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X21
 | |
| *> \verbatim
 | |
| *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
 | |
| *>           On entry, part of the orthogonal matrix whose CSD is
 | |
| *>           desired.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX21
 | |
| *> \verbatim
 | |
| *>          LDX21 is INTEGER
 | |
| *>           The leading dimension of X21. LDX21 >= MAX(1,M-P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] THETA
 | |
| *> \verbatim
 | |
| *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
 | |
| *>           MIN(P,M-P,Q,M-Q).
 | |
| *>           C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
 | |
| *>           S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U1
 | |
| *> \verbatim
 | |
| *>          U1 is DOUBLE PRECISION array, dimension (P)
 | |
| *>           If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU1
 | |
| *> \verbatim
 | |
| *>          LDU1 is INTEGER
 | |
| *>           The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
 | |
| *>           MAX(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U2
 | |
| *> \verbatim
 | |
| *>          U2 is DOUBLE PRECISION array, dimension (M-P)
 | |
| *>           If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
 | |
| *>           matrix U2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU2
 | |
| *> \verbatim
 | |
| *>          LDU2 is INTEGER
 | |
| *>           The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
 | |
| *>           MAX(1,M-P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V1T
 | |
| *> \verbatim
 | |
| *>          V1T is DOUBLE PRECISION array, dimension (Q)
 | |
| *>           If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
 | |
| *>           matrix V1**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV1T
 | |
| *> \verbatim
 | |
| *>          LDV1T is INTEGER
 | |
| *>           The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
 | |
| *>           MAX(1,Q).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>           On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *>           If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
 | |
| *>           ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
 | |
| *>           define the matrix in intermediate bidiagonal-block form
 | |
| *>           remaining after nonconvergence. INFO specifies the number
 | |
| *>           of nonzero PHI's.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>           The dimension of the array WORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *>           If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>           only calculates the optimal size of the WORK array, returns
 | |
| *>           this value as the first entry of the work array, and no error
 | |
| *>           message related to LWORK is issued by XERBLA.
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>           = 0:  successful exit.
 | |
| *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>           > 0:  DBBCSD did not converge. See the description of WORK
 | |
| *>                above for details.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date July 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
 | |
| *>      Algorithms, 50(1):33-65, 2009.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
 | |
|      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
 | |
|      $                       LDV1T, WORK, LWORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (3.5.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     July 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBU1, JOBU2, JOBV1T
 | |
|       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
 | |
|      $                   M, P, Q
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   THETA(*)
 | |
|       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
 | |
|      $                   X11(LDX11,*), X21(LDX21,*)
 | |
|       INTEGER            IWORK(*)
 | |
| *     ..
 | |
| *  
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
 | |
|      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
 | |
|      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
 | |
|      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
 | |
|      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
 | |
|      $                   LWORKMIN, LWORKOPT, R
 | |
|       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DBBCSD, DCOPY, DLACPY, DLAPMR, DLAPMT, DORBDB1,
 | |
|      $                   DORBDB2, DORBDB3, DORBDB4, DORGLQ, DORGQR,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. Intrinsic Function ..
 | |
|       INTRINSIC          INT, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       WANTU1 = LSAME( JOBU1, 'Y' )
 | |
|       WANTU2 = LSAME( JOBU2, 'Y' )
 | |
|       WANTV1T = LSAME( JOBV1T, 'Y' )
 | |
|       LQUERY = LWORK .EQ. -1
 | |
| *
 | |
|       IF( M .LT. 0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( WANTU2 .AND. LDU2 .LT. M - P ) THEN
 | |
|          INFO = -15
 | |
|       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
 | |
|          INFO = -17
 | |
|       END IF
 | |
| *
 | |
|       R = MIN( P, M-P, Q, M-Q )
 | |
| *
 | |
| *     Compute workspace
 | |
| *
 | |
| *       WORK layout:
 | |
| *     |-------------------------------------------------------|
 | |
| *     | LWORKOPT (1)                                          |
 | |
| *     |-------------------------------------------------------|
 | |
| *     | PHI (MAX(1,R-1))                                      |
 | |
| *     |-------------------------------------------------------|
 | |
| *     | TAUP1 (MAX(1,P))                        | B11D (R)    |
 | |
| *     | TAUP2 (MAX(1,M-P))                      | B11E (R-1)  |
 | |
| *     | TAUQ1 (MAX(1,Q))                        | B12D (R)    |
 | |
| *     |-----------------------------------------| B12E (R-1)  |
 | |
| *     | DORBDB WORK | DORGQR WORK | DORGLQ WORK | B21D (R)    |
 | |
| *     |             |             |             | B21E (R-1)  |
 | |
| *     |             |             |             | B22D (R)    |
 | |
| *     |             |             |             | B22E (R-1)  |
 | |
| *     |             |             |             | DBBCSD WORK |
 | |
| *     |-------------------------------------------------------|
 | |
| *
 | |
|       IF( INFO .EQ. 0 ) THEN
 | |
|          IPHI = 2
 | |
|          IB11D = IPHI + MAX( 1, R-1 )
 | |
|          IB11E = IB11D + MAX( 1, R )
 | |
|          IB12D = IB11E + MAX( 1, R - 1 )
 | |
|          IB12E = IB12D + MAX( 1, R )
 | |
|          IB21D = IB12E + MAX( 1, R - 1 )
 | |
|          IB21E = IB21D + MAX( 1, R )
 | |
|          IB22D = IB21E + MAX( 1, R - 1 )
 | |
|          IB22E = IB22D + MAX( 1, R )
 | |
|          IBBCSD = IB22E + MAX( 1, R - 1 )
 | |
|          ITAUP1 = IPHI + MAX( 1, R-1 )
 | |
|          ITAUP2 = ITAUP1 + MAX( 1, P )
 | |
|          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
 | |
|          IORBDB = ITAUQ1 + MAX( 1, Q )
 | |
|          IORGQR = ITAUQ1 + MAX( 1, Q )
 | |
|          IORGLQ = ITAUQ1 + MAX( 1, Q )
 | |
|          IF( R .EQ. Q ) THEN
 | |
|             CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
 | |
|      $                    0, 0, WORK, -1, CHILDINFO )
 | |
|             LORBDB = INT( WORK(1) )
 | |
|             IF( P .GE. M-P ) THEN
 | |
|                CALL DORGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
 | |
|      $                      CHILDINFO )
 | |
|                LORGQRMIN = MAX( 1, P )
 | |
|                LORGQROPT = INT( WORK(1) )
 | |
|             ELSE
 | |
|                CALL DORGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
 | |
|      $                      CHILDINFO )
 | |
|                LORGQRMIN = MAX( 1, M-P )
 | |
|                LORGQROPT = INT( WORK(1) )
 | |
|             END IF
 | |
|             CALL DORGLQ( MAX(0,Q-1), MAX(0,Q-1), MAX(0,Q-1), V1T, LDV1T,
 | |
|      $                   0, WORK(1), -1, CHILDINFO )
 | |
|             LORGLQMIN = MAX( 1, Q-1 )
 | |
|             LORGLQOPT = INT( WORK(1) )
 | |
|             CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
 | |
|      $                   0, U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1, 0, 0,
 | |
|      $                   0, 0, 0, 0, 0, 0, WORK(1), -1, CHILDINFO )
 | |
|             LBBCSD = INT( WORK(1) )
 | |
|          ELSE IF( R .EQ. P ) THEN
 | |
|             CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
 | |
|      $                    0, 0, WORK(1), -1, CHILDINFO )
 | |
|             LORBDB = INT( WORK(1) )
 | |
|             IF( P-1 .GE. M-P ) THEN
 | |
|                CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, 0, WORK(1),
 | |
|      $                      -1, CHILDINFO )
 | |
|                LORGQRMIN = MAX( 1, P-1 )
 | |
|                LORGQROPT = INT( WORK(1) )
 | |
|             ELSE
 | |
|                CALL DORGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
 | |
|      $                      CHILDINFO )
 | |
|                LORGQRMIN = MAX( 1, M-P )
 | |
|                LORGQROPT = INT( WORK(1) )
 | |
|             END IF
 | |
|             CALL DORGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
 | |
|      $                   CHILDINFO )
 | |
|             LORGLQMIN = MAX( 1, Q )
 | |
|             LORGLQOPT = INT( WORK(1) )
 | |
|             CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
 | |
|      $                   0, V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2, 0, 0,
 | |
|      $                   0, 0, 0, 0, 0, 0, WORK(1), -1, CHILDINFO )
 | |
|             LBBCSD = INT( WORK(1) )
 | |
|          ELSE IF( R .EQ. M-P ) THEN
 | |
|             CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
 | |
|      $                    0, 0, WORK(1), -1, CHILDINFO )
 | |
|             LORBDB = INT( WORK(1) )
 | |
|             IF( P .GE. M-P-1 ) THEN
 | |
|                CALL DORGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
 | |
|      $                      CHILDINFO )
 | |
|                LORGQRMIN = MAX( 1, P )
 | |
|                LORGQROPT = INT( WORK(1) )
 | |
|             ELSE
 | |
|                CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, 0,
 | |
|      $                      WORK(1), -1, CHILDINFO )
 | |
|                LORGQRMIN = MAX( 1, M-P-1 )
 | |
|                LORGQROPT = INT( WORK(1) )
 | |
|             END IF
 | |
|             CALL DORGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
 | |
|      $                   CHILDINFO )
 | |
|             LORGLQMIN = MAX( 1, Q )
 | |
|             LORGLQOPT = INT( WORK(1) )
 | |
|             CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
 | |
|      $                   THETA, 0, 0, 1, V1T, LDV1T, U2, LDU2, U1, LDU1,
 | |
|      $                   0, 0, 0, 0, 0, 0, 0, 0, WORK(1), -1,
 | |
|      $                   CHILDINFO )
 | |
|             LBBCSD = INT( WORK(1) )
 | |
|          ELSE
 | |
|             CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
 | |
|      $                    0, 0, 0, WORK(1), -1, CHILDINFO )
 | |
|             LORBDB = M + INT( WORK(1) )
 | |
|             IF( P .GE. M-P ) THEN
 | |
|                CALL DORGQR( P, P, M-Q, U1, LDU1, 0, WORK(1), -1,
 | |
|      $                      CHILDINFO )
 | |
|                LORGQRMIN = MAX( 1, P )
 | |
|                LORGQROPT = INT( WORK(1) )
 | |
|             ELSE
 | |
|                CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, 0, WORK(1), -1,
 | |
|      $                      CHILDINFO )
 | |
|                LORGQRMIN = MAX( 1, M-P )
 | |
|                LORGQROPT = INT( WORK(1) )
 | |
|             END IF
 | |
|             CALL DORGLQ( Q, Q, Q, V1T, LDV1T, 0, WORK(1), -1,
 | |
|      $                   CHILDINFO )
 | |
|             LORGLQMIN = MAX( 1, Q )
 | |
|             LORGLQOPT = INT( WORK(1) )
 | |
|             CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
 | |
|      $                   THETA, 0, U2, LDU2, U1, LDU1, 0, 1, V1T, LDV1T,
 | |
|      $                   0, 0, 0, 0, 0, 0, 0, 0, WORK(1), -1,
 | |
|      $                   CHILDINFO )
 | |
|             LBBCSD = INT( WORK(1) )
 | |
|          END IF
 | |
|          LWORKMIN = MAX( IORBDB+LORBDB-1,
 | |
|      $                   IORGQR+LORGQRMIN-1,
 | |
|      $                   IORGLQ+LORGLQMIN-1,
 | |
|      $                   IBBCSD+LBBCSD-1 )
 | |
|          LWORKOPT = MAX( IORBDB+LORBDB-1,
 | |
|      $                   IORGQR+LORGQROPT-1,
 | |
|      $                   IORGLQ+LORGLQOPT-1,
 | |
|      $                   IBBCSD+LBBCSD-1 )
 | |
|          WORK(1) = LWORKOPT
 | |
|          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -19
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO .NE. 0 ) THEN
 | |
|          CALL XERBLA( 'DORCSD2BY1', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
|       LORGQR = LWORK-IORGQR+1
 | |
|       LORGLQ = LWORK-IORGLQ+1
 | |
| *
 | |
| *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
 | |
| *     in which R = MIN(P,M-P,Q,M-Q)
 | |
| *
 | |
|       IF( R .EQ. Q ) THEN
 | |
| *
 | |
| *        Case 1: R = Q
 | |
| *
 | |
| *        Simultaneously bidiagonalize X11 and X21
 | |
| *
 | |
|          CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
 | |
|      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
 | |
|      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
 | |
| *
 | |
| *        Accumulate Householder reflectors
 | |
| *
 | |
|          IF( WANTU1 .AND. P .GT. 0 ) THEN
 | |
|             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
 | |
|             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
 | |
|      $                   LORGQR, CHILDINFO )
 | |
|          END IF
 | |
|          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
 | |
|             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
 | |
|             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
 | |
|      $                   WORK(IORGQR), LORGQR, CHILDINFO )
 | |
|          END IF
 | |
|          IF( WANTV1T .AND. Q .GT. 0 ) THEN
 | |
|             V1T(1,1) = ONE
 | |
|             DO J = 2, Q
 | |
|                V1T(1,J) = ZERO
 | |
|                V1T(J,1) = ZERO
 | |
|             END DO
 | |
|             CALL DLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
 | |
|      $                   LDV1T )
 | |
|             CALL DORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
 | |
|      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
 | |
|          END IF
 | |
| *   
 | |
| *        Simultaneously diagonalize X11 and X21.
 | |
| *   
 | |
|          CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
 | |
|      $                WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1,
 | |
|      $                WORK(IB11D), WORK(IB11E), WORK(IB12D),
 | |
|      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
 | |
|      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
 | |
|      $                CHILDINFO )
 | |
| *   
 | |
| *        Permute rows and columns to place zero submatrices in
 | |
| *        preferred positions
 | |
| *
 | |
|          IF( Q .GT. 0 .AND. WANTU2 ) THEN
 | |
|             DO I = 1, Q
 | |
|                IWORK(I) = M - P - Q + I
 | |
|             END DO
 | |
|             DO I = Q + 1, M - P
 | |
|                IWORK(I) = I - Q
 | |
|             END DO
 | |
|             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
 | |
|          END IF
 | |
|       ELSE IF( R .EQ. P ) THEN
 | |
| *
 | |
| *        Case 2: R = P
 | |
| *
 | |
| *        Simultaneously bidiagonalize X11 and X21
 | |
| *
 | |
|          CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
 | |
|      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
 | |
|      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
 | |
| *
 | |
| *        Accumulate Householder reflectors
 | |
| *
 | |
|          IF( WANTU1 .AND. P .GT. 0 ) THEN
 | |
|             U1(1,1) = ONE
 | |
|             DO J = 2, P
 | |
|                U1(1,J) = ZERO
 | |
|                U1(J,1) = ZERO
 | |
|             END DO
 | |
|             CALL DLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
 | |
|             CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
 | |
|      $                   WORK(IORGQR), LORGQR, CHILDINFO )
 | |
|          END IF
 | |
|          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
 | |
|             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
 | |
|             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
 | |
|      $                   WORK(IORGQR), LORGQR, CHILDINFO )
 | |
|          END IF
 | |
|          IF( WANTV1T .AND. Q .GT. 0 ) THEN
 | |
|             CALL DLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
 | |
|             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
 | |
|      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
 | |
|          END IF
 | |
| *   
 | |
| *        Simultaneously diagonalize X11 and X21.
 | |
| *   
 | |
|          CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
 | |
|      $                WORK(IPHI), V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2,
 | |
|      $                WORK(IB11D), WORK(IB11E), WORK(IB12D),
 | |
|      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
 | |
|      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
 | |
|      $                CHILDINFO )
 | |
| *   
 | |
| *        Permute rows and columns to place identity submatrices in
 | |
| *        preferred positions
 | |
| *
 | |
|          IF( Q .GT. 0 .AND. WANTU2 ) THEN
 | |
|             DO I = 1, Q
 | |
|                IWORK(I) = M - P - Q + I
 | |
|             END DO
 | |
|             DO I = Q + 1, M - P
 | |
|                IWORK(I) = I - Q
 | |
|             END DO
 | |
|             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
 | |
|          END IF
 | |
|       ELSE IF( R .EQ. M-P ) THEN
 | |
| *
 | |
| *        Case 3: R = M-P
 | |
| *
 | |
| *        Simultaneously bidiagonalize X11 and X21
 | |
| *
 | |
|          CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
 | |
|      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
 | |
|      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
 | |
| *
 | |
| *        Accumulate Householder reflectors
 | |
| *
 | |
|          IF( WANTU1 .AND. P .GT. 0 ) THEN
 | |
|             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
 | |
|             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
 | |
|      $                   LORGQR, CHILDINFO )
 | |
|          END IF
 | |
|          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
 | |
|             U2(1,1) = ONE
 | |
|             DO J = 2, M-P
 | |
|                U2(1,J) = ZERO
 | |
|                U2(J,1) = ZERO
 | |
|             END DO
 | |
|             CALL DLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
 | |
|      $                   LDU2 )
 | |
|             CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
 | |
|      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
 | |
|          END IF
 | |
|          IF( WANTV1T .AND. Q .GT. 0 ) THEN
 | |
|             CALL DLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
 | |
|             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
 | |
|      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
 | |
|          END IF
 | |
| *   
 | |
| *        Simultaneously diagonalize X11 and X21.
 | |
| *   
 | |
|          CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
 | |
|      $                THETA, WORK(IPHI), 0, 1, V1T, LDV1T, U2, LDU2, U1,
 | |
|      $                LDU1, WORK(IB11D), WORK(IB11E), WORK(IB12D),
 | |
|      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
 | |
|      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
 | |
|      $                CHILDINFO )
 | |
| *   
 | |
| *        Permute rows and columns to place identity submatrices in
 | |
| *        preferred positions
 | |
| *
 | |
|          IF( Q .GT. R ) THEN
 | |
|             DO I = 1, R
 | |
|                IWORK(I) = Q - R + I
 | |
|             END DO
 | |
|             DO I = R + 1, Q
 | |
|                IWORK(I) = I - R
 | |
|             END DO
 | |
|             IF( WANTU1 ) THEN
 | |
|                CALL DLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
 | |
|             END IF
 | |
|             IF( WANTV1T ) THEN
 | |
|                CALL DLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Case 4: R = M-Q
 | |
| *
 | |
| *        Simultaneously bidiagonalize X11 and X21
 | |
| *
 | |
|          CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
 | |
|      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
 | |
|      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
 | |
|      $                 LORBDB-M, CHILDINFO )
 | |
| *
 | |
| *        Accumulate Householder reflectors
 | |
| *
 | |
|          IF( WANTU1 .AND. P .GT. 0 ) THEN
 | |
|             CALL DCOPY( P, WORK(IORBDB), 1, U1, 1 )
 | |
|             DO J = 2, P
 | |
|                U1(1,J) = ZERO
 | |
|             END DO
 | |
|             CALL DLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
 | |
|      $                   LDU1 )
 | |
|             CALL DORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
 | |
|      $                   WORK(IORGQR), LORGQR, CHILDINFO )
 | |
|          END IF
 | |
|          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
 | |
|             CALL DCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
 | |
|             DO J = 2, M-P
 | |
|                U2(1,J) = ZERO
 | |
|             END DO
 | |
|             CALL DLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
 | |
|      $                   LDU2 )
 | |
|             CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
 | |
|      $                   WORK(IORGQR), LORGQR, CHILDINFO )
 | |
|          END IF
 | |
|          IF( WANTV1T .AND. Q .GT. 0 ) THEN
 | |
|             CALL DLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
 | |
|             CALL DLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
 | |
|      $                   V1T(M-Q+1,M-Q+1), LDV1T )
 | |
|             CALL DLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
 | |
|      $                   V1T(P+1,P+1), LDV1T )
 | |
|             CALL DORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
 | |
|      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
 | |
|          END IF
 | |
| *   
 | |
| *        Simultaneously diagonalize X11 and X21.
 | |
| *   
 | |
|          CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
 | |
|      $                THETA, WORK(IPHI), U2, LDU2, U1, LDU1, 0, 1, V1T,
 | |
|      $                LDV1T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
 | |
|      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
 | |
|      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
 | |
|      $                CHILDINFO )
 | |
| *   
 | |
| *        Permute rows and columns to place identity submatrices in
 | |
| *        preferred positions
 | |
| *
 | |
|          IF( P .GT. R ) THEN
 | |
|             DO I = 1, R
 | |
|                IWORK(I) = P - R + I
 | |
|             END DO
 | |
|             DO I = R + 1, P
 | |
|                IWORK(I) = I - R
 | |
|             END DO
 | |
|             IF( WANTU1 ) THEN
 | |
|                CALL DLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
 | |
|             END IF
 | |
|             IF( WANTV1T ) THEN
 | |
|                CALL DLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DORCSD2BY1
 | |
| *
 | |
|       END
 | |
| 
 |