510 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			510 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAHD2
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLAHD2( IOUNIT, PATH )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER*3        PATH
 | |
| *       INTEGER            IOUNIT
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLAHD2 prints header information for the different test paths.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] IOUNIT
 | |
| *> \verbatim
 | |
| *>          IOUNIT is INTEGER.
 | |
| *>          On entry, IOUNIT specifies the unit number to which the
 | |
| *>          header information should be printed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PATH
 | |
| *> \verbatim
 | |
| *>          PATH is CHARACTER*3.
 | |
| *>          On entry, PATH contains the name of the path for which the
 | |
| *>          header information is to be printed.  Current paths are
 | |
| *>
 | |
| *>             SHS, CHS:  Non-symmetric eigenproblem.
 | |
| *>             SST, CST:  Symmetric eigenproblem.
 | |
| *>             SSG, CSG:  Symmetric Generalized eigenproblem.
 | |
| *>             SBD, CBD:  Singular Value Decomposition (SVD)
 | |
| *>             SBB, CBB:  General Banded reduction to bidiagonal form
 | |
| *>
 | |
| *>          These paths also are supplied in double precision (replace
 | |
| *>          leading S by D and leading C by Z in path names).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLAHD2( IOUNIT, PATH )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            IOUNIT
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            CORZ, SORD
 | |
|       CHARACTER*2        C2
 | |
|       INTEGER            J
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, LSAMEN
 | |
|       EXTERNAL           LSAME, LSAMEN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( IOUNIT.LE.0 )
 | |
|      $   RETURN
 | |
|       SORD = LSAME( PATH, 'S' ) .OR. LSAME( PATH, 'D' )
 | |
|       CORZ = LSAME( PATH, 'C' ) .OR. LSAME( PATH, 'Z' )
 | |
|       IF( .NOT.SORD .AND. .NOT.CORZ ) THEN
 | |
|          WRITE( IOUNIT, FMT = 9999 )PATH
 | |
|       END IF
 | |
|       C2 = PATH( 2: 3 )
 | |
| *
 | |
|       IF( LSAMEN( 2, C2, 'HS' ) ) THEN
 | |
|          IF( SORD ) THEN
 | |
| *
 | |
| *           Real Non-symmetric Eigenvalue Problem:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9998 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9988 )
 | |
|             WRITE( IOUNIT, FMT = 9987 )
 | |
|             WRITE( IOUNIT, FMT = 9986 )'pairs ', 'pairs ', 'prs.',
 | |
|      $         'prs.'
 | |
|             WRITE( IOUNIT, FMT = 9985 )
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9984 )'orthogonal', '''=transpose',
 | |
|      $         ( '''', J = 1, 6 )
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Complex Non-symmetric Eigenvalue Problem:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9997 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9988 )
 | |
|             WRITE( IOUNIT, FMT = 9987 )
 | |
|             WRITE( IOUNIT, FMT = 9986 )'e.vals', 'e.vals', 'e.vs',
 | |
|      $         'e.vs'
 | |
|             WRITE( IOUNIT, FMT = 9985 )
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9984 )'unitary', '*=conj.transp.',
 | |
|      $         ( '*', J = 1, 6 )
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( LSAMEN( 2, C2, 'ST' ) ) THEN
 | |
| *
 | |
|          IF( SORD ) THEN
 | |
| *
 | |
| *           Real Symmetric Eigenvalue Problem:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9996 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9983 )
 | |
|             WRITE( IOUNIT, FMT = 9982 )
 | |
|             WRITE( IOUNIT, FMT = 9981 )'Symmetric'
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9968 )
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Complex Hermitian Eigenvalue Problem:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9995 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9983 )
 | |
|             WRITE( IOUNIT, FMT = 9982 )
 | |
|             WRITE( IOUNIT, FMT = 9981 )'Hermitian'
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9967 )
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( LSAMEN( 2, C2, 'SG' ) ) THEN
 | |
| *
 | |
|          IF( SORD ) THEN
 | |
| *
 | |
| *           Real Symmetric Generalized Eigenvalue Problem:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9992 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9980 )
 | |
|             WRITE( IOUNIT, FMT = 9979 )
 | |
|             WRITE( IOUNIT, FMT = 9978 )'Symmetric'
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9977 )
 | |
|             WRITE( IOUNIT, FMT = 9976 )
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Complex Hermitian Generalized Eigenvalue Problem:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9991 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9980 )
 | |
|             WRITE( IOUNIT, FMT = 9979 )
 | |
|             WRITE( IOUNIT, FMT = 9978 )'Hermitian'
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9975 )
 | |
|             WRITE( IOUNIT, FMT = 9974 )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( LSAMEN( 2, C2, 'BD' ) ) THEN
 | |
| *
 | |
|          IF( SORD ) THEN
 | |
| *
 | |
| *           Real Singular Value Decomposition:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9994 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9973 )
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9972 )'orthogonal'
 | |
|             WRITE( IOUNIT, FMT = 9971 )
 | |
|          ELSE
 | |
| *
 | |
| *           Complex Singular Value Decomposition:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9993 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9973 )
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9972 )'unitary   '
 | |
|             WRITE( IOUNIT, FMT = 9971 )
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( LSAMEN( 2, C2, 'BB' ) ) THEN
 | |
| *
 | |
|          IF( SORD ) THEN
 | |
| *
 | |
| *           Real General Band reduction to bidiagonal form:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9990 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9970 )
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9969 )'orthogonal'
 | |
|          ELSE
 | |
| *
 | |
| *           Complex Band reduction to bidiagonal form:
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9989 )PATH
 | |
| *
 | |
| *           Matrix types
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9970 )
 | |
| *
 | |
| *           Tests performed
 | |
| *
 | |
|             WRITE( IOUNIT, FMT = 9969 )'unitary   '
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
|          WRITE( IOUNIT, FMT = 9999 )PATH
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
|  9999 FORMAT( 1X, A3, ':  no header available' )
 | |
|  9998 FORMAT( / 1X, A3, ' -- Real Non-symmetric eigenvalue problem' )
 | |
|  9997 FORMAT( / 1X, A3, ' -- Complex Non-symmetric eigenvalue problem' )
 | |
|  9996 FORMAT( / 1X, A3, ' -- Real Symmetric eigenvalue problem' )
 | |
|  9995 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' )
 | |
|  9994 FORMAT( / 1X, A3, ' -- Real Singular Value Decomposition' )
 | |
|  9993 FORMAT( / 1X, A3, ' -- Complex Singular Value Decomposition' )
 | |
|  9992 FORMAT( / 1X, A3, ' -- Real Symmetric Generalized eigenvalue ',
 | |
|      $      'problem' )
 | |
|  9991 FORMAT( / 1X, A3, ' -- Complex Hermitian Generalized eigenvalue ',
 | |
|      $      'problem' )
 | |
|  9990 FORMAT( / 1X, A3, ' -- Real Band reduc. to bidiagonal form' )
 | |
|  9989 FORMAT( / 1X, A3, ' -- Complex Band reduc. to bidiagonal form' )
 | |
| *
 | |
|  9988 FORMAT( ' Matrix types (see xCHKHS for details): ' )
 | |
| *
 | |
|  9987 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
 | |
|      $      '           ', '  5=Diagonal: geometr. spaced entries.',
 | |
|      $      / '  2=Identity matrix.                    ', '  6=Diagona',
 | |
|      $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
 | |
|      $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
 | |
|      $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
 | |
|      $      'mall, evenly spaced.' )
 | |
|  9986 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
 | |
|      $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
 | |
|      $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
 | |
|      $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
 | |
|      $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
 | |
|      $      'lex ', A6, / ' 12=Well-cond., random complex ', A6, '   ',
 | |
|      $      ' 17=Ill-cond., large rand. complx ', A4, / ' 13=Ill-condi',
 | |
|      $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
 | |
|      $      ' complx ', A4 )
 | |
|  9985 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
 | |
|      $      'with small random entries.', / ' 20=Matrix with large ran',
 | |
|      $      'dom entries.   ' )
 | |
|  9984 FORMAT( / ' Tests performed:   ', '(H is Hessenberg, T is Schur,',
 | |
|      $      ' U and Z are ', A, ',', / 20X, A, ', W is a diagonal matr',
 | |
|      $      'ix of eigenvalues,', / 20X, 'L and R are the left and rig',
 | |
|      $      'ht eigenvector matrices)', / '  1 = | A - U H U', A1, ' |',
 | |
|      $      ' / ( |A| n ulp )         ', '  2 = | I - U U', A1, ' | / ',
 | |
|      $      '( n ulp )', / '  3 = | H - Z T Z', A1, ' | / ( |H| n ulp ',
 | |
|      $      ')         ', '  4 = | I - Z Z', A1, ' | / ( n ulp )',
 | |
|      $      / '  5 = | A - UZ T (UZ)', A1, ' | / ( |A| n ulp )     ',
 | |
|      $      '  6 = | I - UZ (UZ)', A1, ' | / ( n ulp )', / '  7 = | T(',
 | |
|      $      'e.vects.) - T(no e.vects.) | / ( |T| ulp )', / '  8 = | W',
 | |
|      $      '(e.vects.) - W(no e.vects.) | / ( |W| ulp )', / '  9 = | ',
 | |
|      $      'TR - RW | / ( |T| |R| ulp )     ', ' 10 = | LT - WL | / (',
 | |
|      $      ' |T| |L| ulp )', / ' 11= |HX - XW| / (|H| |X| ulp)  (inv.',
 | |
|      $      'it)', ' 12= |YH - WY| / (|H| |Y| ulp)  (inv.it)' )
 | |
| *
 | |
| *     Symmetric/Hermitian eigenproblem
 | |
| *
 | |
|  9983 FORMAT( ' Matrix types (see xDRVST for details): ' )
 | |
| *
 | |
|  9982 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
 | |
|      $      '           ', '  5=Diagonal: clustered entries.', / '  2=',
 | |
|      $      'Identity matrix.                    ', '  6=Diagonal: lar',
 | |
|      $      'ge, evenly spaced.', / '  3=Diagonal: evenly spaced entri',
 | |
|      $      'es.    ', '  7=Diagonal: small, evenly spaced.', / '  4=D',
 | |
|      $      'iagonal: geometr. spaced entries.' )
 | |
|  9981 FORMAT( ' Dense ', A, ' Matrices:', / '  8=Evenly spaced eigen',
 | |
|      $      'vals.            ', ' 12=Small, evenly spaced eigenvals.',
 | |
|      $      / '  9=Geometrically spaced eigenvals.     ', ' 13=Matrix ',
 | |
|      $      'with random O(1) entries.', / ' 10=Clustered eigenvalues.',
 | |
|      $      '              ', ' 14=Matrix with large random entries.',
 | |
|      $      / ' 11=Large, evenly spaced eigenvals.     ', ' 15=Matrix ',
 | |
|      $      'with small random entries.' )
 | |
| *
 | |
| *     Symmetric/Hermitian Generalized eigenproblem
 | |
| *
 | |
|  9980 FORMAT( ' Matrix types (see xDRVSG for details): ' )
 | |
| *
 | |
|  9979 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
 | |
|      $      '           ', '  5=Diagonal: clustered entries.', / '  2=',
 | |
|      $      'Identity matrix.                    ', '  6=Diagonal: lar',
 | |
|      $      'ge, evenly spaced.', / '  3=Diagonal: evenly spaced entri',
 | |
|      $      'es.    ', '  7=Diagonal: small, evenly spaced.', / '  4=D',
 | |
|      $      'iagonal: geometr. spaced entries.' )
 | |
|  9978 FORMAT( ' Dense or Banded ', A, ' Matrices: ',
 | |
|      $      / '  8=Evenly spaced eigenvals.         ',
 | |
|      $      ' 15=Matrix with small random entries.',
 | |
|      $      / '  9=Geometrically spaced eigenvals.  ',
 | |
|      $      ' 16=Evenly spaced eigenvals, KA=1, KB=1.',
 | |
|      $      / ' 10=Clustered eigenvalues.           ',
 | |
|      $      ' 17=Evenly spaced eigenvals, KA=2, KB=1.',
 | |
|      $      / ' 11=Large, evenly spaced eigenvals.  ',
 | |
|      $      ' 18=Evenly spaced eigenvals, KA=2, KB=2.',
 | |
|      $      / ' 12=Small, evenly spaced eigenvals.  ',
 | |
|      $      ' 19=Evenly spaced eigenvals, KA=3, KB=1.',
 | |
|      $      / ' 13=Matrix with random O(1) entries. ',
 | |
|      $      ' 20=Evenly spaced eigenvals, KA=3, KB=2.',
 | |
|      $      / ' 14=Matrix with large random entries.',
 | |
|      $      ' 21=Evenly spaced eigenvals, KA=3, KB=3.' )
 | |
|  9977 FORMAT( / ' Tests performed:   ',
 | |
|      $      / '( For each pair (A,B), where A is of the given type ',
 | |
|      $      / ' and B is a random well-conditioned matrix. D is ',
 | |
|      $      / ' diagonal, and Z is orthogonal. )',
 | |
|      $      / ' 1 = SSYGV, with ITYPE=1 and UPLO=''U'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 2 = SSPGV, with ITYPE=1 and UPLO=''U'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 3 = SSBGV, with ITYPE=1 and UPLO=''U'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 4 = SSYGV, with ITYPE=1 and UPLO=''L'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 5 = SSPGV, with ITYPE=1 and UPLO=''L'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 6 = SSBGV, with ITYPE=1 and UPLO=''L'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ' )
 | |
|  9976 FORMAT( ' 7 = SSYGV, with ITYPE=2 and UPLO=''U'':',
 | |
|      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 8 = SSPGV, with ITYPE=2 and UPLO=''U'':',
 | |
|      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 9 = SSPGV, with ITYPE=2 and UPLO=''L'':',
 | |
|      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '10 = SSPGV, with ITYPE=2 and UPLO=''L'':',
 | |
|      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '11 = SSYGV, with ITYPE=3 and UPLO=''U'':',
 | |
|      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '12 = SSPGV, with ITYPE=3 and UPLO=''U'':',
 | |
|      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '13 = SSYGV, with ITYPE=3 and UPLO=''L'':',
 | |
|      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '14 = SSPGV, with ITYPE=3 and UPLO=''L'':',
 | |
|      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ' )
 | |
|  9975 FORMAT( / ' Tests performed:   ',
 | |
|      $      / '( For each pair (A,B), where A is of the given type ',
 | |
|      $      / ' and B is a random well-conditioned matrix. D is ',
 | |
|      $      / ' diagonal, and Z is unitary. )',
 | |
|      $      / ' 1 = CHEGV, with ITYPE=1 and UPLO=''U'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 2 = CHPGV, with ITYPE=1 and UPLO=''U'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 3 = CHBGV, with ITYPE=1 and UPLO=''U'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 4 = CHEGV, with ITYPE=1 and UPLO=''L'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 5 = CHPGV, with ITYPE=1 and UPLO=''L'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 6 = CHBGV, with ITYPE=1 and UPLO=''L'':',
 | |
|      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ' )
 | |
|  9974 FORMAT( ' 7 = CHEGV, with ITYPE=2 and UPLO=''U'':',
 | |
|      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 8 = CHPGV, with ITYPE=2 and UPLO=''U'':',
 | |
|      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / ' 9 = CHPGV, with ITYPE=2 and UPLO=''L'':',
 | |
|      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '10 = CHPGV, with ITYPE=2 and UPLO=''L'':',
 | |
|      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '11 = CHEGV, with ITYPE=3 and UPLO=''U'':',
 | |
|      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '12 = CHPGV, with ITYPE=3 and UPLO=''U'':',
 | |
|      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '13 = CHEGV, with ITYPE=3 and UPLO=''L'':',
 | |
|      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 | |
|      $      / '14 = CHPGV, with ITYPE=3 and UPLO=''L'':',
 | |
|      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ' )
 | |
| *
 | |
| *     Singular Value Decomposition
 | |
| *
 | |
|  9973 FORMAT( ' Matrix types (see xCHKBD for details):',
 | |
|      $      / ' Diagonal matrices:', / '   1: Zero', 28X,
 | |
|      $      ' 5: Clustered entries', / '   2: Identity', 24X,
 | |
|      $      ' 6: Large, evenly spaced entries',
 | |
|      $      / '   3: Evenly spaced entries', 11X,
 | |
|      $      ' 7: Small, evenly spaced entries',
 | |
|      $      / '   4: Geometrically spaced entries',
 | |
|      $      / ' General matrices:', / '   8: Evenly spaced sing. vals.',
 | |
|      $      7X, '12: Small, evenly spaced sing vals',
 | |
|      $      / '   9: Geometrically spaced sing vals  ',
 | |
|      $      '13: Random, O(1) entries', / '  10: Clustered sing. vals.',
 | |
|      $      11X, '14: Random, scaled near overflow',
 | |
|      $      / '  11: Large, evenly spaced sing vals  ',
 | |
|      $      '15: Random, scaled near underflow' )
 | |
| *
 | |
|  9972 FORMAT( / ' Test ratios:  ',
 | |
|      $      '(B: bidiagonal, S: diagonal, Q, P, U, and V: ', A10, / 16X,
 | |
|      $      'X: m x nrhs, Y = Q'' X, and Z = U'' Y)',
 | |
|      $      / '   1: norm( A - Q B P'' ) / ( norm(A) max(m,n) ulp )',
 | |
|      $      / '   2: norm( I - Q'' Q )   / ( m ulp )',
 | |
|      $      / '   3: norm( I - P'' P )   / ( n ulp )',
 | |
|      $      / '   4: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )', /
 | |
|      $      '   5: norm( Y - U Z )    / ( norm(Z) max(min(m,n),k) ulp )'
 | |
|      $      , / '   6: norm( I - U'' U )   / ( min(m,n) ulp )',
 | |
|      $      / '   7: norm( I - V'' V )   / ( min(m,n) ulp )' )
 | |
|  9971 FORMAT( '   8: Test ordering of S  (0 if nondecreasing, 1/ulp ',
 | |
|      $      ' otherwise)', /
 | |
|      $      '   9: norm( S - S2 )     / ( norm(S) ulp ),',
 | |
|      $      ' where S2 is computed', / 44X,
 | |
|      $      'without computing U and V''',
 | |
|      $      / '  10: Sturm sequence test ',
 | |
|      $      '(0 if sing. vals of B within THRESH of S)',
 | |
|      $      / '  11: norm( A - (QU) S (V'' P'') ) / ',
 | |
|      $      '( norm(A) max(m,n) ulp )', /
 | |
|      $      '  12: norm( X - (QU) Z )         / ( |X| max(M,k) ulp )',
 | |
|      $      / '  13: norm( I - (QU)''(QU) )      / ( M ulp )',
 | |
|      $      / '  14: norm( I - (V'' P'') (P V) )  / ( N ulp )' )
 | |
| *
 | |
| *     Band reduction to bidiagonal form
 | |
| *
 | |
|  9970 FORMAT( ' Matrix types (see xCHKBB for details):',
 | |
|      $      / ' Diagonal matrices:', / '   1: Zero', 28X,
 | |
|      $      ' 5: Clustered entries', / '   2: Identity', 24X,
 | |
|      $      ' 6: Large, evenly spaced entries',
 | |
|      $      / '   3: Evenly spaced entries', 11X,
 | |
|      $      ' 7: Small, evenly spaced entries',
 | |
|      $      / '   4: Geometrically spaced entries',
 | |
|      $      / ' General matrices:', / '   8: Evenly spaced sing. vals.',
 | |
|      $      7X, '12: Small, evenly spaced sing vals',
 | |
|      $      / '   9: Geometrically spaced sing vals  ',
 | |
|      $      '13: Random, O(1) entries', / '  10: Clustered sing. vals.',
 | |
|      $      11X, '14: Random, scaled near overflow',
 | |
|      $      / '  11: Large, evenly spaced sing vals  ',
 | |
|      $      '15: Random, scaled near underflow' )
 | |
| *
 | |
|  9969 FORMAT( / ' Test ratios:  ', '(B: upper bidiagonal, Q and P: ',
 | |
|      $      A10, / 16X, 'C: m x nrhs, PT = P'', Y = Q'' C)',
 | |
|      $      / ' 1: norm( A - Q B PT ) / ( norm(A) max(m,n) ulp )',
 | |
|      $      / ' 2: norm( I - Q'' Q )   / ( m ulp )',
 | |
|      $      / ' 3: norm( I - PT PT'' )   / ( n ulp )',
 | |
|      $      / ' 4: norm( Y - Q'' C )   / ( norm(Y) max(m,nrhs) ulp )' )
 | |
|  9968 FORMAT( / ' Tests performed:  See sdrvst.f' )
 | |
|  9967 FORMAT( / ' Tests performed:  See cdrvst.f' )
 | |
| *
 | |
| *     End of SLAHD2
 | |
| *
 | |
|       END
 |