1122 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1122 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c_n1 = -1;
 | |
| 
 | |
| /* > \brief \b DTRSEN */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DTRSEN + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI, */
 | |
| /*                          M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          COMPQ, JOB */
 | |
| /*       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N */
 | |
| /*       DOUBLE PRECISION   S, SEP */
 | |
| /*       LOGICAL            SELECT( * ) */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ), */
 | |
| /*      $                   WR( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DTRSEN reorders the real Schur factorization of a real matrix */
 | |
| /* > A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in */
 | |
| /* > the leading diagonal blocks of the upper quasi-triangular matrix T, */
 | |
| /* > and the leading columns of Q form an orthonormal basis of the */
 | |
| /* > corresponding right invariant subspace. */
 | |
| /* > */
 | |
| /* > Optionally the routine computes the reciprocal condition numbers of */
 | |
| /* > the cluster of eigenvalues and/or the invariant subspace. */
 | |
| /* > */
 | |
| /* > T must be in Schur canonical form (as returned by DHSEQR), that is, */
 | |
| /* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
 | |
| /* > 2-by-2 diagonal block has its diagonal elements equal and its */
 | |
| /* > off-diagonal elements of opposite sign. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOB */
 | |
| /* > \verbatim */
 | |
| /* >          JOB is CHARACTER*1 */
 | |
| /* >          Specifies whether condition numbers are required for the */
 | |
| /* >          cluster of eigenvalues (S) or the invariant subspace (SEP): */
 | |
| /* >          = 'N': none; */
 | |
| /* >          = 'E': for eigenvalues only (S); */
 | |
| /* >          = 'V': for invariant subspace only (SEP); */
 | |
| /* >          = 'B': for both eigenvalues and invariant subspace (S and */
 | |
| /* >                 SEP). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COMPQ */
 | |
| /* > \verbatim */
 | |
| /* >          COMPQ is CHARACTER*1 */
 | |
| /* >          = 'V': update the matrix Q of Schur vectors; */
 | |
| /* >          = 'N': do not update Q. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SELECT */
 | |
| /* > \verbatim */
 | |
| /* >          SELECT is LOGICAL array, dimension (N) */
 | |
| /* >          SELECT specifies the eigenvalues in the selected cluster. To */
 | |
| /* >          select a real eigenvalue w(j), SELECT(j) must be set to */
 | |
| /* >          .TRUE.. To select a complex conjugate pair of eigenvalues */
 | |
| /* >          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
 | |
| /* >          either SELECT(j) or SELECT(j+1) or both must be set to */
 | |
| /* >          .TRUE.; a complex conjugate pair of eigenvalues must be */
 | |
| /* >          either both included in the cluster or both excluded. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix T. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is DOUBLE PRECISION array, dimension (LDT,N) */
 | |
| /* >          On entry, the upper quasi-triangular matrix T, in Schur */
 | |
| /* >          canonical form. */
 | |
| /* >          On exit, T is overwritten by the reordered matrix T, again in */
 | |
| /* >          Schur canonical form, with the selected eigenvalues in the */
 | |
| /* >          leading diagonal blocks. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the array T. LDT >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is DOUBLE PRECISION array, dimension (LDQ,N) */
 | |
| /* >          On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
 | |
| /* >          On exit, if COMPQ = 'V', Q has been postmultiplied by the */
 | |
| /* >          orthogonal transformation matrix which reorders T; the */
 | |
| /* >          leading M columns of Q form an orthonormal basis for the */
 | |
| /* >          specified invariant subspace. */
 | |
| /* >          If COMPQ = 'N', Q is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >          The leading dimension of the array Q. */
 | |
| /* >          LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WR */
 | |
| /* > \verbatim */
 | |
| /* >          WR is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > \param[out] WI */
 | |
| /* > \verbatim */
 | |
| /* >          WI is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > */
 | |
| /* >          The real and imaginary parts, respectively, of the reordered */
 | |
| /* >          eigenvalues of T. The eigenvalues are stored in the same */
 | |
| /* >          order as on the diagonal of T, with WR(i) = T(i,i) and, if */
 | |
| /* >          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and */
 | |
| /* >          WI(i+1) = -WI(i). Note that if a complex eigenvalue is */
 | |
| /* >          sufficiently ill-conditioned, then its value may differ */
 | |
| /* >          significantly from its value before reordering. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The dimension of the specified invariant subspace. */
 | |
| /* >          0 < = M <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is DOUBLE PRECISION */
 | |
| /* >          If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
 | |
| /* >          condition number for the selected cluster of eigenvalues. */
 | |
| /* >          S cannot underestimate the true reciprocal condition number */
 | |
| /* >          by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
 | |
| /* >          If JOB = 'N' or 'V', S is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SEP */
 | |
| /* > \verbatim */
 | |
| /* >          SEP is DOUBLE PRECISION */
 | |
| /* >          If JOB = 'V' or 'B', SEP is the estimated reciprocal */
 | |
| /* >          condition number of the specified invariant subspace. If */
 | |
| /* >          M = 0 or N, SEP = norm(T). */
 | |
| /* >          If JOB = 'N' or 'E', SEP is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. */
 | |
| /* >          If JOB = 'N', LWORK >= f2cmax(1,N); */
 | |
| /* >          if JOB = 'E', LWORK >= f2cmax(1,M*(N-M)); */
 | |
| /* >          if JOB = 'V' or 'B', LWORK >= f2cmax(1,2*M*(N-M)). */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
 | |
| /* >          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LIWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LIWORK is INTEGER */
 | |
| /* >          The dimension of the array IWORK. */
 | |
| /* >          If JOB = 'N' or 'E', LIWORK >= 1; */
 | |
| /* >          if JOB = 'V' or 'B', LIWORK >= f2cmax(1,M*(N-M)). */
 | |
| /* > */
 | |
| /* >          If LIWORK = -1, then a workspace query is assumed; the */
 | |
| /* >          routine only calculates the optimal size of the IWORK array, */
 | |
| /* >          returns this value as the first entry of the IWORK array, and */
 | |
| /* >          no error message related to LIWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          = 1: reordering of T failed because some eigenvalues are too */
 | |
| /* >               close to separate (the problem is very ill-conditioned); */
 | |
| /* >               T may have been partially reordered, and WR and WI */
 | |
| /* >               contain the eigenvalues in the same order as in T; S and */
 | |
| /* >               SEP (if requested) are set to zero. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date April 2012 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  DTRSEN first collects the selected eigenvalues by computing an */
 | |
| /* >  orthogonal transformation Z to move them to the top left corner of T. */
 | |
| /* >  In other words, the selected eigenvalues are the eigenvalues of T11 */
 | |
| /* >  in: */
 | |
| /* > */
 | |
| /* >          Z**T * T * Z = ( T11 T12 ) n1 */
 | |
| /* >                         (  0  T22 ) n2 */
 | |
| /* >                            n1  n2 */
 | |
| /* > */
 | |
| /* >  where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns */
 | |
| /* >  of Z span the specified invariant subspace of T. */
 | |
| /* > */
 | |
| /* >  If T has been obtained from the real Schur factorization of a matrix */
 | |
| /* >  A = Q*T*Q**T, then the reordered real Schur factorization of A is given */
 | |
| /* >  by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span */
 | |
| /* >  the corresponding invariant subspace of A. */
 | |
| /* > */
 | |
| /* >  The reciprocal condition number of the average of the eigenvalues of */
 | |
| /* >  T11 may be returned in S. S lies between 0 (very badly conditioned) */
 | |
| /* >  and 1 (very well conditioned). It is computed as follows. First we */
 | |
| /* >  compute R so that */
 | |
| /* > */
 | |
| /* >                         P = ( I  R ) n1 */
 | |
| /* >                             ( 0  0 ) n2 */
 | |
| /* >                               n1 n2 */
 | |
| /* > */
 | |
| /* >  is the projector on the invariant subspace associated with T11. */
 | |
| /* >  R is the solution of the Sylvester equation: */
 | |
| /* > */
 | |
| /* >                        T11*R - R*T22 = T12. */
 | |
| /* > */
 | |
| /* >  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
 | |
| /* >  the two-norm of M. Then S is computed as the lower bound */
 | |
| /* > */
 | |
| /* >                      (1 + F-norm(R)**2)**(-1/2) */
 | |
| /* > */
 | |
| /* >  on the reciprocal of 2-norm(P), the true reciprocal condition number. */
 | |
| /* >  S cannot underestimate 1 / 2-norm(P) by more than a factor of */
 | |
| /* >  sqrt(N). */
 | |
| /* > */
 | |
| /* >  An approximate error bound for the computed average of the */
 | |
| /* >  eigenvalues of T11 is */
 | |
| /* > */
 | |
| /* >                         EPS * norm(T) / S */
 | |
| /* > */
 | |
| /* >  where EPS is the machine precision. */
 | |
| /* > */
 | |
| /* >  The reciprocal condition number of the right invariant subspace */
 | |
| /* >  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
 | |
| /* >  SEP is defined as the separation of T11 and T22: */
 | |
| /* > */
 | |
| /* >                     sep( T11, T22 ) = sigma-f2cmin( C ) */
 | |
| /* > */
 | |
| /* >  where sigma-f2cmin(C) is the smallest singular value of the */
 | |
| /* >  n1*n2-by-n1*n2 matrix */
 | |
| /* > */
 | |
| /* >     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */
 | |
| /* > */
 | |
| /* >  I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
 | |
| /* >  product. We estimate sigma-f2cmin(C) by the reciprocal of an estimate of */
 | |
| /* >  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
 | |
| /* >  cannot differ from sigma-f2cmin(C) by more than a factor of sqrt(n1*n2). */
 | |
| /* > */
 | |
| /* >  When SEP is small, small changes in T can cause large changes in */
 | |
| /* >  the invariant subspace. An approximate bound on the maximum angular */
 | |
| /* >  error in the computed right invariant subspace is */
 | |
| /* > */
 | |
| /* >                      EPS * norm(T) / SEP */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dtrsen_(char *job, char *compq, logical *select, integer 
 | |
| 	*n, doublereal *t, integer *ldt, doublereal *q, integer *ldq, 
 | |
| 	doublereal *wr, doublereal *wi, integer *m, doublereal *s, doublereal 
 | |
| 	*sep, doublereal *work, integer *lwork, integer *iwork, integer *
 | |
| 	liwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;
 | |
|     doublereal d__1, d__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer kase;
 | |
|     logical pair;
 | |
|     integer ierr;
 | |
|     logical swap;
 | |
|     integer k;
 | |
|     doublereal scale;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer isave[3], lwmin;
 | |
|     logical wantq, wants;
 | |
|     doublereal rnorm;
 | |
|     integer n1, n2;
 | |
|     extern /* Subroutine */ void dlacn2_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, doublereal *, integer *, integer *);
 | |
|     integer kk;
 | |
|     extern doublereal dlange_(char *, integer *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *);
 | |
|     integer nn, ks;
 | |
|     extern /* Subroutine */ void dlacpy_(char *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *); 
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     logical wantbh;
 | |
|     extern /* Subroutine */ void dtrexc_(char *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *, integer *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     integer liwmin;
 | |
|     logical wantsp, lquery;
 | |
|     extern /* Subroutine */ void dtrsyl_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *);
 | |
|     doublereal est;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     April 2012 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --select;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     --wr;
 | |
|     --wi;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     wantbh = lsame_(job, "B");
 | |
|     wants = lsame_(job, "E") || wantbh;
 | |
|     wantsp = lsame_(job, "V") || wantbh;
 | |
|     wantq = lsame_(compq, "V");
 | |
| 
 | |
|     *info = 0;
 | |
|     lquery = *lwork == -1;
 | |
|     if (! lsame_(job, "N") && ! wants && ! wantsp) {
 | |
| 	*info = -1;
 | |
|     } else if (! lsame_(compq, "N") && ! wantq) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldt < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldq < 1 || wantq && *ldq < *n) {
 | |
| 	*info = -8;
 | |
|     } else {
 | |
| 
 | |
| /*        Set M to the dimension of the specified invariant subspace, */
 | |
| /*        and test LWORK and LIWORK. */
 | |
| 
 | |
| 	*m = 0;
 | |
| 	pair = FALSE_;
 | |
| 	i__1 = *n;
 | |
| 	for (k = 1; k <= i__1; ++k) {
 | |
| 	    if (pair) {
 | |
| 		pair = FALSE_;
 | |
| 	    } else {
 | |
| 		if (k < *n) {
 | |
| 		    if (t[k + 1 + k * t_dim1] == 0.) {
 | |
| 			if (select[k]) {
 | |
| 			    ++(*m);
 | |
| 			}
 | |
| 		    } else {
 | |
| 			pair = TRUE_;
 | |
| 			if (select[k] || select[k + 1]) {
 | |
| 			    *m += 2;
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    if (select[*n]) {
 | |
| 			++(*m);
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| /* L10: */
 | |
| 	}
 | |
| 
 | |
| 	n1 = *m;
 | |
| 	n2 = *n - *m;
 | |
| 	nn = n1 * n2;
 | |
| 
 | |
| 	if (wantsp) {
 | |
| /* Computing MAX */
 | |
| 	    i__1 = 1, i__2 = nn << 1;
 | |
| 	    lwmin = f2cmax(i__1,i__2);
 | |
| 	    liwmin = f2cmax(1,nn);
 | |
| 	} else if (lsame_(job, "N")) {
 | |
| 	    lwmin = f2cmax(1,*n);
 | |
| 	    liwmin = 1;
 | |
| 	} else if (lsame_(job, "E")) {
 | |
| 	    lwmin = f2cmax(1,nn);
 | |
| 	    liwmin = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (*lwork < lwmin && ! lquery) {
 | |
| 	    *info = -15;
 | |
| 	} else if (*liwork < liwmin && ! lquery) {
 | |
| 	    *info = -17;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	work[1] = (doublereal) lwmin;
 | |
| 	iwork[1] = liwmin;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DTRSEN", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible. */
 | |
| 
 | |
|     if (*m == *n || *m == 0) {
 | |
| 	if (wants) {
 | |
| 	    *s = 1.;
 | |
| 	}
 | |
| 	if (wantsp) {
 | |
| 	    *sep = dlange_("1", n, n, &t[t_offset], ldt, &work[1]);
 | |
| 	}
 | |
| 	goto L40;
 | |
|     }
 | |
| 
 | |
| /*     Collect the selected blocks at the top-left corner of T. */
 | |
| 
 | |
|     ks = 0;
 | |
|     pair = FALSE_;
 | |
|     i__1 = *n;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	if (pair) {
 | |
| 	    pair = FALSE_;
 | |
| 	} else {
 | |
| 	    swap = select[k];
 | |
| 	    if (k < *n) {
 | |
| 		if (t[k + 1 + k * t_dim1] != 0.) {
 | |
| 		    pair = TRUE_;
 | |
| 		    swap = swap || select[k + 1];
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (swap) {
 | |
| 		++ks;
 | |
| 
 | |
| /*              Swap the K-th block to position KS. */
 | |
| 
 | |
| 		ierr = 0;
 | |
| 		kk = k;
 | |
| 		if (k != ks) {
 | |
| 		    dtrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
 | |
| 			    kk, &ks, &work[1], &ierr);
 | |
| 		}
 | |
| 		if (ierr == 1 || ierr == 2) {
 | |
| 
 | |
| /*                 Blocks too close to swap: exit. */
 | |
| 
 | |
| 		    *info = 1;
 | |
| 		    if (wants) {
 | |
| 			*s = 0.;
 | |
| 		    }
 | |
| 		    if (wantsp) {
 | |
| 			*sep = 0.;
 | |
| 		    }
 | |
| 		    goto L40;
 | |
| 		}
 | |
| 		if (pair) {
 | |
| 		    ++ks;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
|     if (wants) {
 | |
| 
 | |
| /*        Solve Sylvester equation for R: */
 | |
| 
 | |
| /*           T11*R - R*T22 = scale*T12 */
 | |
| 
 | |
| 	dlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);
 | |
| 	dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 
 | |
| 		+ 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);
 | |
| 
 | |
| /*        Estimate the reciprocal of the condition number of the cluster */
 | |
| /*        of eigenvalues. */
 | |
| 
 | |
| 	rnorm = dlange_("F", &n1, &n2, &work[1], &n1, &work[1]);
 | |
| 	if (rnorm == 0.) {
 | |
| 	    *s = 1.;
 | |
| 	} else {
 | |
| 	    *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (wantsp) {
 | |
| 
 | |
| /*        Estimate sep(T11,T22). */
 | |
| 
 | |
| 	est = 0.;
 | |
| 	kase = 0;
 | |
| L30:
 | |
| 	dlacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave);
 | |
| 	if (kase != 0) {
 | |
| 	    if (kase == 1) {
 | |
| 
 | |
| /*              Solve  T11*R - R*T22 = scale*X. */
 | |
| 
 | |
| 		dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 
 | |
| 			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
 | |
| 			ierr);
 | |
| 	    } else {
 | |
| 
 | |
| /*              Solve T11**T*R - R*T22**T = scale*X. */
 | |
| 
 | |
| 		dtrsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 
 | |
| 			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
 | |
| 			ierr);
 | |
| 	    }
 | |
| 	    goto L30;
 | |
| 	}
 | |
| 
 | |
| 	*sep = scale / est;
 | |
|     }
 | |
| 
 | |
| L40:
 | |
| 
 | |
| /*     Store the output eigenvalues in WR and WI. */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	wr[k] = t[k + k * t_dim1];
 | |
| 	wi[k] = 0.;
 | |
| /* L50: */
 | |
|     }
 | |
|     i__1 = *n - 1;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	if (t[k + 1 + k * t_dim1] != 0.) {
 | |
| 	    wi[k] = sqrt((d__1 = t[k + (k + 1) * t_dim1], abs(d__1))) * sqrt((
 | |
| 		    d__2 = t[k + 1 + k * t_dim1], abs(d__2)));
 | |
| 	    wi[k + 1] = -wi[k];
 | |
| 	}
 | |
| /* L60: */
 | |
|     }
 | |
| 
 | |
|     work[1] = (doublereal) lwmin;
 | |
|     iwork[1] = liwmin;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of DTRSEN */
 | |
| 
 | |
| } /* dtrsen_ */
 | |
| 
 |