349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGETSQRHRT
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGETSQRHRT + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetsqrhrt.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetsqrhrt.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetsqrhrt.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
 | |
| *      $                       LWORK, INFO )
 | |
| *       IMPLICIT NONE
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER           INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGETSQRHRT computes a NB2-sized column blocked QR-factorization
 | |
| *> of a real M-by-N matrix A with M >= N,
 | |
| *>
 | |
| *>    A = Q * R.
 | |
| *>
 | |
| *> The routine uses internally a NB1-sized column blocked and MB1-sized
 | |
| *> row blocked TSQR-factorization and perfors the reconstruction
 | |
| *> of the Householder vectors from the TSQR output. The routine also
 | |
| *> converts the R_tsqr factor from the TSQR-factorization output into
 | |
| *> the R factor that corresponds to the Householder QR-factorization,
 | |
| *>
 | |
| *>    A = Q_tsqr * R_tsqr = Q * R.
 | |
| *>
 | |
| *> The output Q and R factors are stored in the same format as in DGEQRT
 | |
| *> (Q is in blocked compact WY-representation). See the documentation
 | |
| *> of DGEQRT for more details on the format.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A. M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MB1
 | |
| *> \verbatim
 | |
| *>          MB1 is INTEGER
 | |
| *>          The row block size to be used in the blocked TSQR.
 | |
| *>          MB1 > N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB1
 | |
| *> \verbatim
 | |
| *>          NB1 is INTEGER
 | |
| *>          The column block size to be used in the blocked TSQR.
 | |
| *>          N >= NB1 >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB2
 | |
| *> \verbatim
 | |
| *>          NB2 is INTEGER
 | |
| *>          The block size to be used in the blocked QR that is
 | |
| *>          output. NB2 >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>
 | |
| *>          On entry: an M-by-N matrix A.
 | |
| *>
 | |
| *>          On exit:
 | |
| *>           a) the elements on and above the diagonal
 | |
| *>              of the array contain the N-by-N upper-triangular
 | |
| *>              matrix R corresponding to the Householder QR;
 | |
| *>           b) the elements below the diagonal represent Q by
 | |
| *>              the columns of blocked V (compact WY-representation).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is DOUBLE PRECISION array, dimension (LDT,N))
 | |
| *>          The upper triangular block reflectors stored in compact form
 | |
| *>          as a sequence of upper triangular blocks.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= NB2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          The dimension of the array WORK.
 | |
| *>          LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ),
 | |
| *>          where
 | |
| *>             NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)),
 | |
| *>             NB1LOCAL = MIN(NB1,N).
 | |
| *>             LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL,
 | |
| *>             LW1 = NB1LOCAL * N,
 | |
| *>             LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ),
 | |
| *>          If LWORK = -1, then a workspace query is assumed.
 | |
| *>          The routine only calculates the optimal size of the WORK
 | |
| *>          array, returns this value as the first entry of the WORK
 | |
| *>          array, and no error message related to LWORK is issued
 | |
| *>          by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> November 2020, Igor Kozachenko,
 | |
| *>                Computer Science Division,
 | |
| *>                University of California, Berkeley
 | |
| *>
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
 | |
|      $                       LWORK, INFO )
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER           INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT,
 | |
|      $                   NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DLATSQR, DORGTSQR_ROW, DORHR_COL,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CEILING, DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY  = LWORK.EQ.-1
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( MB1.LE.N ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NB1.LT.1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( NB2.LT.1 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDT.LT.MAX( 1,  MIN( NB2, N ) ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE
 | |
| *
 | |
| *        Test the input LWORK for the dimension of the array WORK.
 | |
| *        This workspace is used to store array:
 | |
| *        a) Matrix T and WORK for DLATSQR;
 | |
| *        b) N-by-N upper-triangular factor R_tsqr;
 | |
| *        c) Matrix T and array WORK for DORGTSQR_ROW;
 | |
| *        d) Diagonal D for DORHR_COL.
 | |
| *
 | |
|          IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -11
 | |
|          ELSE
 | |
| *
 | |
| *           Set block size for column blocks
 | |
| *
 | |
|             NB1LOCAL = MIN( NB1, N )
 | |
| *
 | |
|             NUM_ALL_ROW_BLOCKS = MAX( 1,
 | |
|      $                   CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) )
 | |
| *
 | |
| *           Length and leading dimension of WORK array to place
 | |
| *           T array in TSQR.
 | |
| *
 | |
|             LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL
 | |
| 
 | |
|             LDWT = NB1LOCAL
 | |
| *
 | |
| *           Length of TSQR work array
 | |
| *
 | |
|             LW1 = NB1LOCAL * N
 | |
| *
 | |
| *           Length of DORGTSQR_ROW work array.
 | |
| *
 | |
|             LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) )
 | |
| *
 | |
|             LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) )
 | |
| *
 | |
|             IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
 | |
|                INFO = -11
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Handle error in the input parameters and return workspace query.
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGETSQRHRT', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF ( LQUERY ) THEN
 | |
|          WORK( 1 ) = DBLE( LWORKOPT )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N ).EQ.0 ) THEN
 | |
|          WORK( 1 ) = DBLE( LWORKOPT )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       NB2LOCAL = MIN( NB2, N )
 | |
| *
 | |
| *
 | |
| *     (1) Perform TSQR-factorization of the M-by-N matrix A.
 | |
| *
 | |
|       CALL DLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
 | |
|      $              WORK(LWT+1), LW1, IINFO )
 | |
| *
 | |
| *     (2) Copy the factor R_tsqr stored in the upper-triangular part
 | |
| *         of A into the square matrix in the work array
 | |
| *         WORK(LWT+1:LWT+N*N) column-by-column.
 | |
| *
 | |
|       DO J = 1, N
 | |
|          CALL DCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 )
 | |
|       END DO
 | |
| *
 | |
| *     (3) Generate a M-by-N matrix Q with orthonormal columns from
 | |
| *     the result stored below the diagonal in the array A in place.
 | |
| *
 | |
| 
 | |
|       CALL DORGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
 | |
|      $                   WORK( LWT+N*N+1 ), LW2, IINFO )
 | |
| *
 | |
| *     (4) Perform the reconstruction of Householder vectors from
 | |
| *     the matrix Q (stored in A) in place.
 | |
| *
 | |
|       CALL DORHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT,
 | |
|      $                WORK( LWT+N*N+1 ), IINFO )
 | |
| *
 | |
| *     (5) Copy the factor R_tsqr stored in the square matrix in the
 | |
| *     work array WORK(LWT+1:LWT+N*N) into the upper-triangular
 | |
| *     part of A.
 | |
| *
 | |
| *     (6) Compute from R_tsqr the factor R_hr corresponding to
 | |
| *     the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr.
 | |
| *     This multiplication by the sign matrix S on the left means
 | |
| *     changing the sign of I-th row of the matrix R_tsqr according
 | |
| *     to sign of the I-th diagonal element DIAG(I) of the matrix S.
 | |
| *     DIAG is stored in WORK( LWT+N*N+1 ) from the DORHR_COL output.
 | |
| *
 | |
| *     (5) and (6) can be combined in a single loop, so the rows in A
 | |
| *     are accessed only once.
 | |
| *
 | |
|       DO I = 1, N
 | |
|          IF( WORK( LWT+N*N+I ).EQ.-ONE ) THEN
 | |
|             DO J = I, N
 | |
|                A( I, J ) = -ONE * WORK( LWT+N*(J-1)+I )
 | |
|             END DO
 | |
|          ELSE
 | |
|             CALL DCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA )
 | |
|          END IF
 | |
|       END DO
 | |
| *
 | |
|       WORK( 1 ) = DBLE( LWORKOPT )
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGETSQRHRT
 | |
| *
 | |
|       END |