926 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			926 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle_() continue;
 | 
						|
#define myceiling_(w) {ceil(w)}
 | 
						|
#define myhuge_(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static doublecomplex c_b1 = {-1.,0.};
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b ZUNBDB2 */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download ZUNBDB2 + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb2
 | 
						|
.f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb2
 | 
						|
.f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb2
 | 
						|
.f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, */
 | 
						|
/*                           TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO ) */
 | 
						|
 | 
						|
/*       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21 */
 | 
						|
/*       DOUBLE PRECISION   PHI(*), THETA(*) */
 | 
						|
/*       COMPLEX*16         TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), */
 | 
						|
/*      $                   X11(LDX11,*), X21(LDX21,*) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* >\verbatim */
 | 
						|
/* > */
 | 
						|
/* > ZUNBDB2 simultaneously bidiagonalizes the blocks of a tall and skinny */
 | 
						|
/* > matrix X with orthonomal columns: */
 | 
						|
/* > */
 | 
						|
/* >                            [ B11 ] */
 | 
						|
/* >      [ X11 ]   [ P1 |    ] [  0  ] */
 | 
						|
/* >      [-----] = [---------] [-----] Q1**T . */
 | 
						|
/* >      [ X21 ]   [    | P2 ] [ B21 ] */
 | 
						|
/* >                            [  0  ] */
 | 
						|
/* > */
 | 
						|
/* > X11 is P-by-Q, and X21 is (M-P)-by-Q. P must be no larger than M-P, */
 | 
						|
/* > Q, or M-Q. Routines ZUNBDB1, ZUNBDB3, and ZUNBDB4 handle cases in */
 | 
						|
/* > which P is not the minimum dimension. */
 | 
						|
/* > */
 | 
						|
/* > The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), */
 | 
						|
/* > and (M-Q)-by-(M-Q), respectively. They are represented implicitly by */
 | 
						|
/* > Householder vectors. */
 | 
						|
/* > */
 | 
						|
/* > B11 and B12 are P-by-P bidiagonal matrices represented implicitly by */
 | 
						|
/* > angles THETA, PHI. */
 | 
						|
/* > */
 | 
						|
/* >\endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >           The number of rows X11 plus the number of rows in X21. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] P */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          P is INTEGER */
 | 
						|
/* >           The number of rows in X11. 0 <= P <= f2cmin(M-P,Q,M-Q). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] Q */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Q is INTEGER */
 | 
						|
/* >           The number of columns in X11 and X21. 0 <= Q <= M. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] X11 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X11 is COMPLEX*16 array, dimension (LDX11,Q) */
 | 
						|
/* >           On entry, the top block of the matrix X to be reduced. On */
 | 
						|
/* >           exit, the columns of tril(X11) specify reflectors for P1 and */
 | 
						|
/* >           the rows of triu(X11,1) specify reflectors for Q1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDX11 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDX11 is INTEGER */
 | 
						|
/* >           The leading dimension of X11. LDX11 >= P. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] X21 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X21 is COMPLEX*16 array, dimension (LDX21,Q) */
 | 
						|
/* >           On entry, the bottom block of the matrix X to be reduced. On */
 | 
						|
/* >           exit, the columns of tril(X21) specify reflectors for P2. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDX21 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDX21 is INTEGER */
 | 
						|
/* >           The leading dimension of X21. LDX21 >= M-P. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] THETA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          THETA is DOUBLE PRECISION array, dimension (Q) */
 | 
						|
/* >           The entries of the bidiagonal blocks B11, B21 are defined by */
 | 
						|
/* >           THETA and PHI. See Further Details. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] PHI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          PHI is DOUBLE PRECISION array, dimension (Q-1) */
 | 
						|
/* >           The entries of the bidiagonal blocks B11, B21 are defined by */
 | 
						|
/* >           THETA and PHI. See Further Details. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] TAUP1 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TAUP1 is COMPLEX*16 array, dimension (P) */
 | 
						|
/* >           The scalar factors of the elementary reflectors that define */
 | 
						|
/* >           P1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] TAUP2 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TAUP2 is COMPLEX*16 array, dimension (M-P) */
 | 
						|
/* >           The scalar factors of the elementary reflectors that define */
 | 
						|
/* >           P2. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] TAUQ1 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TAUQ1 is COMPLEX*16 array, dimension (Q) */
 | 
						|
/* >           The scalar factors of the elementary reflectors that define */
 | 
						|
/* >           Q1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is COMPLEX*16 array, dimension (LWORK) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >           The dimension of the array WORK. LWORK >= M-Q. */
 | 
						|
/* > */
 | 
						|
/* >           If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >           only calculates the optimal size of the WORK array, returns */
 | 
						|
/* >           this value as the first entry of the WORK array, and no error */
 | 
						|
/* >           message related to LWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >           = 0:  successful exit. */
 | 
						|
/* >           < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date July 2012 */
 | 
						|
 | 
						|
/* > \ingroup complex16OTHERcomputational */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  The upper-bidiagonal blocks B11, B21 are represented implicitly by */
 | 
						|
/* >  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry */
 | 
						|
/* >  in each bidiagonal band is a product of a sine or cosine of a THETA */
 | 
						|
/* >  with a sine or cosine of a PHI. See [1] or ZUNCSD for details. */
 | 
						|
/* > */
 | 
						|
/* >  P1, P2, and Q1 are represented as products of elementary reflectors. */
 | 
						|
/* >  See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR */
 | 
						|
/* >  and ZUNGLQ. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/* > \par References: */
 | 
						|
/*  ================ */
 | 
						|
/* > */
 | 
						|
/* >  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
 | 
						|
/* >      Algorithms, 50(1):33-65, 2009. */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void zunbdb2_(integer *m, integer *p, integer *q, 
 | 
						|
	doublecomplex *x11, integer *ldx11, doublecomplex *x21, integer *
 | 
						|
	ldx21, doublereal *theta, doublereal *phi, doublecomplex *taup1, 
 | 
						|
	doublecomplex *taup2, doublecomplex *tauq1, doublecomplex *work, 
 | 
						|
	integer *lwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer x11_dim1, x11_offset, x21_dim1, x21_offset, i__1, i__2, i__3, 
 | 
						|
	    i__4;
 | 
						|
    doublereal d__1, d__2;
 | 
						|
    doublecomplex z__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer lworkmin, lworkopt;
 | 
						|
    doublereal c__;
 | 
						|
    integer i__;
 | 
						|
    doublereal s;
 | 
						|
    integer ilarf, llarf;
 | 
						|
    extern /* Subroutine */ void zscal_(integer *, doublecomplex *, 
 | 
						|
	    doublecomplex *, integer *);
 | 
						|
    integer childinfo;
 | 
						|
    extern /* Subroutine */ void zlarf_(char *, integer *, integer *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | 
						|
	    integer *, doublecomplex *), zdrot_(integer *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | 
						|
	    doublereal *, doublereal *);
 | 
						|
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern void zlacgv_(
 | 
						|
	    integer *, doublecomplex *, integer *);
 | 
						|
    logical lquery;
 | 
						|
    integer iorbdb5, lorbdb5;
 | 
						|
    extern /* Subroutine */ void zunbdb5_(integer *, integer *, integer *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | 
						|
	    doublecomplex *, integer *, integer *), zlarfgp_(integer *, 
 | 
						|
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.8.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     July 2012 */
 | 
						|
 | 
						|
 | 
						|
/*  ==================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test input arguments */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    x11_dim1 = *ldx11;
 | 
						|
    x11_offset = 1 + x11_dim1 * 1;
 | 
						|
    x11 -= x11_offset;
 | 
						|
    x21_dim1 = *ldx21;
 | 
						|
    x21_offset = 1 + x21_dim1 * 1;
 | 
						|
    x21 -= x21_offset;
 | 
						|
    --theta;
 | 
						|
    --phi;
 | 
						|
    --taup1;
 | 
						|
    --taup2;
 | 
						|
    --tauq1;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    lquery = *lwork == -1;
 | 
						|
 | 
						|
    if (*m < 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*p < 0 || *p > *m - *p) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*q < 0 || *q < *p || *m - *q < *p) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*ldx11 < f2cmax(1,*p)) {
 | 
						|
	*info = -5;
 | 
						|
    } else /* if(complicated condition) */ {
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = 1, i__2 = *m - *p;
 | 
						|
	if (*ldx21 < f2cmax(i__1,i__2)) {
 | 
						|
	    *info = -7;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute workspace */
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
	ilarf = 2;
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = *p - 1, i__2 = *m - *p, i__1 = f2cmax(i__1,i__2), i__2 = *q - 1;
 | 
						|
	llarf = f2cmax(i__1,i__2);
 | 
						|
	iorbdb5 = 2;
 | 
						|
	lorbdb5 = *q - 1;
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = ilarf + llarf - 1, i__2 = iorbdb5 + lorbdb5 - 1;
 | 
						|
	lworkopt = f2cmax(i__1,i__2);
 | 
						|
	lworkmin = lworkopt;
 | 
						|
	work[1].r = (doublereal) lworkopt, work[1].i = 0.;
 | 
						|
	if (*lwork < lworkmin && ! lquery) {
 | 
						|
	    *info = -14;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("ZUNBDB2", &i__1, (ftnlen)7);
 | 
						|
	return;
 | 
						|
    } else if (lquery) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Reduce rows 1, ..., P of X11 and X21 */
 | 
						|
 | 
						|
    i__1 = *p;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
 | 
						|
	if (i__ > 1) {
 | 
						|
	    i__2 = *q - i__ + 1;
 | 
						|
	    zdrot_(&i__2, &x11[i__ + i__ * x11_dim1], ldx11, &x21[i__ - 1 + 
 | 
						|
		    i__ * x21_dim1], ldx21, &c__, &s);
 | 
						|
	}
 | 
						|
	i__2 = *q - i__ + 1;
 | 
						|
	zlacgv_(&i__2, &x11[i__ + i__ * x11_dim1], ldx11);
 | 
						|
	i__2 = *q - i__ + 1;
 | 
						|
	zlarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + (i__ + 1) * 
 | 
						|
		x11_dim1], ldx11, &tauq1[i__]);
 | 
						|
	i__2 = i__ + i__ * x11_dim1;
 | 
						|
	c__ = x11[i__2].r;
 | 
						|
	i__2 = i__ + i__ * x11_dim1;
 | 
						|
	x11[i__2].r = 1., x11[i__2].i = 0.;
 | 
						|
	i__2 = *p - i__;
 | 
						|
	i__3 = *q - i__ + 1;
 | 
						|
	zlarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &tauq1[
 | 
						|
		i__], &x11[i__ + 1 + i__ * x11_dim1], ldx11, &work[ilarf]);
 | 
						|
	i__2 = *m - *p - i__ + 1;
 | 
						|
	i__3 = *q - i__ + 1;
 | 
						|
	zlarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &tauq1[
 | 
						|
		i__], &x21[i__ + i__ * x21_dim1], ldx21, &work[ilarf]);
 | 
						|
	i__2 = *q - i__ + 1;
 | 
						|
	zlacgv_(&i__2, &x11[i__ + i__ * x11_dim1], ldx11);
 | 
						|
	i__2 = *p - i__;
 | 
						|
/* Computing 2nd power */
 | 
						|
	d__1 = dznrm2_(&i__2, &x11[i__ + 1 + i__ * x11_dim1], &c__1);
 | 
						|
	i__3 = *m - *p - i__ + 1;
 | 
						|
/* Computing 2nd power */
 | 
						|
	d__2 = dznrm2_(&i__3, &x21[i__ + i__ * x21_dim1], &c__1);
 | 
						|
	s = sqrt(d__1 * d__1 + d__2 * d__2);
 | 
						|
	theta[i__] = atan2(s, c__);
 | 
						|
 | 
						|
	i__2 = *p - i__;
 | 
						|
	i__3 = *m - *p - i__ + 1;
 | 
						|
	i__4 = *q - i__;
 | 
						|
	zunbdb5_(&i__2, &i__3, &i__4, &x11[i__ + 1 + i__ * x11_dim1], &c__1, &
 | 
						|
		x21[i__ + i__ * x21_dim1], &c__1, &x11[i__ + 1 + (i__ + 1) * 
 | 
						|
		x11_dim1], ldx11, &x21[i__ + (i__ + 1) * x21_dim1], ldx21, &
 | 
						|
		work[iorbdb5], &lorbdb5, &childinfo);
 | 
						|
	i__2 = *p - i__;
 | 
						|
	zscal_(&i__2, &c_b1, &x11[i__ + 1 + i__ * x11_dim1], &c__1);
 | 
						|
	i__2 = *m - *p - i__ + 1;
 | 
						|
	zlarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + 1 + i__ * 
 | 
						|
		x21_dim1], &c__1, &taup2[i__]);
 | 
						|
	if (i__ < *p) {
 | 
						|
	    i__2 = *p - i__;
 | 
						|
	    zlarfgp_(&i__2, &x11[i__ + 1 + i__ * x11_dim1], &x11[i__ + 2 + 
 | 
						|
		    i__ * x11_dim1], &c__1, &taup1[i__]);
 | 
						|
	    phi[i__] = atan2((doublereal) x11[i__ + 1 + i__ * x11_dim1].r, (
 | 
						|
		    doublereal) x21[i__ + i__ * x21_dim1].r);
 | 
						|
	    c__ = cos(phi[i__]);
 | 
						|
	    s = sin(phi[i__]);
 | 
						|
	    i__2 = i__ + 1 + i__ * x11_dim1;
 | 
						|
	    x11[i__2].r = 1., x11[i__2].i = 0.;
 | 
						|
	    i__2 = *p - i__;
 | 
						|
	    i__3 = *q - i__;
 | 
						|
	    d_cnjg(&z__1, &taup1[i__]);
 | 
						|
	    zlarf_("L", &i__2, &i__3, &x11[i__ + 1 + i__ * x11_dim1], &c__1, &
 | 
						|
		    z__1, &x11[i__ + 1 + (i__ + 1) * x11_dim1], ldx11, &work[
 | 
						|
		    ilarf]);
 | 
						|
	}
 | 
						|
	i__2 = i__ + i__ * x21_dim1;
 | 
						|
	x21[i__2].r = 1., x21[i__2].i = 0.;
 | 
						|
	i__2 = *m - *p - i__ + 1;
 | 
						|
	i__3 = *q - i__;
 | 
						|
	d_cnjg(&z__1, &taup2[i__]);
 | 
						|
	zlarf_("L", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], &c__1, &z__1, &
 | 
						|
		x21[i__ + (i__ + 1) * x21_dim1], ldx21, &work[ilarf]);
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
/*     Reduce the bottom-right portion of X21 to the identity matrix */
 | 
						|
 | 
						|
    i__1 = *q;
 | 
						|
    for (i__ = *p + 1; i__ <= i__1; ++i__) {
 | 
						|
	i__2 = *m - *p - i__ + 1;
 | 
						|
	zlarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + 1 + i__ * 
 | 
						|
		x21_dim1], &c__1, &taup2[i__]);
 | 
						|
	i__2 = i__ + i__ * x21_dim1;
 | 
						|
	x21[i__2].r = 1., x21[i__2].i = 0.;
 | 
						|
	i__2 = *m - *p - i__ + 1;
 | 
						|
	i__3 = *q - i__;
 | 
						|
	d_cnjg(&z__1, &taup2[i__]);
 | 
						|
	zlarf_("L", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], &c__1, &z__1, &
 | 
						|
		x21[i__ + (i__ + 1) * x21_dim1], ldx21, &work[ilarf]);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of ZUNBDB2 */
 | 
						|
 | 
						|
} /* zunbdb2_ */
 | 
						|
 |