1494 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1494 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static doublereal c_b15 = -.125;
 | 
						|
static integer c__1 = 1;
 | 
						|
static doublereal c_b49 = 1.;
 | 
						|
static doublereal c_b72 = -1.;
 | 
						|
 | 
						|
/* > \brief \b ZBDSQR */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download ZBDSQR + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbdsqr.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbdsqr.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbdsqr.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, */
 | 
						|
/*                          LDU, C, LDC, RWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          UPLO */
 | 
						|
/*       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU */
 | 
						|
/*       DOUBLE PRECISION   D( * ), E( * ), RWORK( * ) */
 | 
						|
/*       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > ZBDSQR computes the singular values and, optionally, the right and/or */
 | 
						|
/* > left singular vectors from the singular value decomposition (SVD) of */
 | 
						|
/* > a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
 | 
						|
/* > zero-shift QR algorithm.  The SVD of B has the form */
 | 
						|
/* > */
 | 
						|
/* >    B = Q * S * P**H */
 | 
						|
/* > */
 | 
						|
/* > where S is the diagonal matrix of singular values, Q is an orthogonal */
 | 
						|
/* > matrix of left singular vectors, and P is an orthogonal matrix of */
 | 
						|
/* > right singular vectors.  If left singular vectors are requested, this */
 | 
						|
/* > subroutine actually returns U*Q instead of Q, and, if right singular */
 | 
						|
/* > vectors are requested, this subroutine returns P**H*VT instead of */
 | 
						|
/* > P**H, for given complex input matrices U and VT.  When U and VT are */
 | 
						|
/* > the unitary matrices that reduce a general matrix A to bidiagonal */
 | 
						|
/* > form: A = U*B*VT, as computed by ZGEBRD, then */
 | 
						|
/* > */
 | 
						|
/* >    A = (U*Q) * S * (P**H*VT) */
 | 
						|
/* > */
 | 
						|
/* > is the SVD of A.  Optionally, the subroutine may also compute Q**H*C */
 | 
						|
/* > for a given complex input matrix C. */
 | 
						|
/* > */
 | 
						|
/* > See "Computing  Small Singular Values of Bidiagonal Matrices With */
 | 
						|
/* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
 | 
						|
/* > LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
 | 
						|
/* > no. 5, pp. 873-912, Sept 1990) and */
 | 
						|
/* > "Accurate singular values and differential qd algorithms," by */
 | 
						|
/* > B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
 | 
						|
/* > Department, University of California at Berkeley, July 1992 */
 | 
						|
/* > for a detailed description of the algorithm. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >          = 'U':  B is upper bidiagonal; */
 | 
						|
/* >          = 'L':  B is lower bidiagonal. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix B.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NCVT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NCVT is INTEGER */
 | 
						|
/* >          The number of columns of the matrix VT. NCVT >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NRU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NRU is INTEGER */
 | 
						|
/* >          The number of rows of the matrix U. NRU >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NCC */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NCC is INTEGER */
 | 
						|
/* >          The number of columns of the matrix C. NCC >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] D */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          On entry, the n diagonal elements of the bidiagonal matrix B. */
 | 
						|
/* >          On exit, if INFO=0, the singular values of B in decreasing */
 | 
						|
/* >          order. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] E */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          E is DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/* >          On entry, the N-1 offdiagonal elements of the bidiagonal */
 | 
						|
/* >          matrix B. */
 | 
						|
/* >          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
 | 
						|
/* >          will contain the diagonal and superdiagonal elements of a */
 | 
						|
/* >          bidiagonal matrix orthogonally equivalent to the one given */
 | 
						|
/* >          as input. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] VT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VT is COMPLEX*16 array, dimension (LDVT, NCVT) */
 | 
						|
/* >          On entry, an N-by-NCVT matrix VT. */
 | 
						|
/* >          On exit, VT is overwritten by P**H * VT. */
 | 
						|
/* >          Not referenced if NCVT = 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVT is INTEGER */
 | 
						|
/* >          The leading dimension of the array VT. */
 | 
						|
/* >          LDVT >= f2cmax(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] U */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          U is COMPLEX*16 array, dimension (LDU, N) */
 | 
						|
/* >          On entry, an NRU-by-N matrix U. */
 | 
						|
/* >          On exit, U is overwritten by U * Q. */
 | 
						|
/* >          Not referenced if NRU = 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDU is INTEGER */
 | 
						|
/* >          The leading dimension of the array U.  LDU >= f2cmax(1,NRU). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] C */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          C is COMPLEX*16 array, dimension (LDC, NCC) */
 | 
						|
/* >          On entry, an N-by-NCC matrix C. */
 | 
						|
/* >          On exit, C is overwritten by Q**H * C. */
 | 
						|
/* >          Not referenced if NCC = 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDC */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDC is INTEGER */
 | 
						|
/* >          The leading dimension of the array C. */
 | 
						|
/* >          LDC >= f2cmax(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RWORK is DOUBLE PRECISION array, dimension (4*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  If INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0:  the algorithm did not converge; D and E contain the */
 | 
						|
/* >                elements of a bidiagonal matrix which is orthogonally */
 | 
						|
/* >                similar to the input matrix B;  if INFO = i, i */
 | 
						|
/* >                elements of E have not converged to zero. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/* > \par Internal Parameters: */
 | 
						|
/*  ========================= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* >  TOLMUL  DOUBLE PRECISION, default = f2cmax(10,f2cmin(100,EPS**(-1/8))) */
 | 
						|
/* >          TOLMUL controls the convergence criterion of the QR loop. */
 | 
						|
/* >          If it is positive, TOLMUL*EPS is the desired relative */
 | 
						|
/* >             precision in the computed singular values. */
 | 
						|
/* >          If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
 | 
						|
/* >             desired absolute accuracy in the computed singular */
 | 
						|
/* >             values (corresponds to relative accuracy */
 | 
						|
/* >             abs(TOLMUL*EPS) in the largest singular value. */
 | 
						|
/* >          abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
 | 
						|
/* >             between 10 (for fast convergence) and .1/EPS */
 | 
						|
/* >             (for there to be some accuracy in the results). */
 | 
						|
/* >          Default is to lose at either one eighth or 2 of the */
 | 
						|
/* >             available decimal digits in each computed singular value */
 | 
						|
/* >             (whichever is smaller). */
 | 
						|
/* > */
 | 
						|
/* >  MAXITR  INTEGER, default = 6 */
 | 
						|
/* >          MAXITR controls the maximum number of passes of the */
 | 
						|
/* >          algorithm through its inner loop. The algorithms stops */
 | 
						|
/* >          (and so fails to converge) if the number of passes */
 | 
						|
/* >          through the inner loop exceeds MAXITR*N**2. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complex16OTHERcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void zbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
 | 
						|
	nru, integer *ncc, doublereal *d__, doublereal *e, doublecomplex *vt, 
 | 
						|
	integer *ldvt, doublecomplex *u, integer *ldu, doublecomplex *c__, 
 | 
						|
	integer *ldc, doublereal *rwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
 | 
						|
	    i__2;
 | 
						|
    doublereal d__1, d__2, d__3, d__4;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    doublereal abse;
 | 
						|
    integer idir;
 | 
						|
    doublereal abss;
 | 
						|
    integer oldm;
 | 
						|
    doublereal cosl;
 | 
						|
    integer isub, iter;
 | 
						|
    doublereal unfl, sinl, cosr, smin, smax, sinr;
 | 
						|
    extern /* Subroutine */ void dlas2_(doublereal *, doublereal *, doublereal 
 | 
						|
	    *, doublereal *, doublereal *);
 | 
						|
    doublereal f, g, h__;
 | 
						|
    integer i__, j, m;
 | 
						|
    doublereal r__;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    doublereal oldcs;
 | 
						|
    integer oldll;
 | 
						|
    doublereal shift, sigmn, oldsn;
 | 
						|
    integer maxit;
 | 
						|
    doublereal sminl, sigmx;
 | 
						|
    logical lower;
 | 
						|
    extern /* Subroutine */ void zlasr_(char *, char *, char *, integer *, 
 | 
						|
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *), zdrot_(integer *, doublecomplex *, 
 | 
						|
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *)
 | 
						|
	    , zswap_(integer *, doublecomplex *, integer *, doublecomplex *, 
 | 
						|
	    integer *), dlasq1_(integer *, doublereal *, doublereal *, 
 | 
						|
	    doublereal *, integer *), dlasv2_(doublereal *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *);
 | 
						|
    doublereal cs;
 | 
						|
    integer ll;
 | 
						|
    extern doublereal dlamch_(char *);
 | 
						|
    doublereal sn, mu;
 | 
						|
    extern /* Subroutine */ void dlartg_(doublereal *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *);
 | 
						|
    extern int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern void zdscal_(integer *, doublereal *, 
 | 
						|
	    doublecomplex *, integer *);
 | 
						|
    doublereal sminoa, thresh;
 | 
						|
    logical rotate;
 | 
						|
    integer nm1;
 | 
						|
    doublereal tolmul;
 | 
						|
    integer nm12, nm13, lll;
 | 
						|
    doublereal eps, sll, tol;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --d__;
 | 
						|
    --e;
 | 
						|
    vt_dim1 = *ldvt;
 | 
						|
    vt_offset = 1 + vt_dim1 * 1;
 | 
						|
    vt -= vt_offset;
 | 
						|
    u_dim1 = *ldu;
 | 
						|
    u_offset = 1 + u_dim1 * 1;
 | 
						|
    u -= u_offset;
 | 
						|
    c_dim1 = *ldc;
 | 
						|
    c_offset = 1 + c_dim1 * 1;
 | 
						|
    c__ -= c_offset;
 | 
						|
    --rwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    lower = lsame_(uplo, "L");
 | 
						|
    if (! lsame_(uplo, "U") && ! lower) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*ncvt < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*nru < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*ncc < 0) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
 | 
						|
	*info = -9;
 | 
						|
    } else if (*ldu < f2cmax(1,*nru)) {
 | 
						|
	*info = -11;
 | 
						|
    } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
 | 
						|
	*info = -13;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("ZBDSQR", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
    if (*n == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
    if (*n == 1) {
 | 
						|
	goto L160;
 | 
						|
    }
 | 
						|
 | 
						|
/*     ROTATE is true if any singular vectors desired, false otherwise */
 | 
						|
 | 
						|
    rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
 | 
						|
 | 
						|
/*     If no singular vectors desired, use qd algorithm */
 | 
						|
 | 
						|
    if (! rotate) {
 | 
						|
	dlasq1_(n, &d__[1], &e[1], &rwork[1], info);
 | 
						|
 | 
						|
/*     If INFO equals 2, dqds didn't finish, try to finish */
 | 
						|
 | 
						|
	if (*info != 2) {
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
	*info = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    nm1 = *n - 1;
 | 
						|
    nm12 = nm1 + nm1;
 | 
						|
    nm13 = nm12 + nm1;
 | 
						|
    idir = 0;
 | 
						|
 | 
						|
/*     Get machine constants */
 | 
						|
 | 
						|
    eps = dlamch_("Epsilon");
 | 
						|
    unfl = dlamch_("Safe minimum");
 | 
						|
 | 
						|
/*     If matrix lower bidiagonal, rotate to be upper bidiagonal */
 | 
						|
/*     by applying Givens rotations on the left */
 | 
						|
 | 
						|
    if (lower) {
 | 
						|
	i__1 = *n - 1;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
 | 
						|
	    d__[i__] = r__;
 | 
						|
	    e[i__] = sn * d__[i__ + 1];
 | 
						|
	    d__[i__ + 1] = cs * d__[i__ + 1];
 | 
						|
	    rwork[i__] = cs;
 | 
						|
	    rwork[nm1 + i__] = sn;
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Update singular vectors if desired */
 | 
						|
 | 
						|
	if (*nru > 0) {
 | 
						|
	    zlasr_("R", "V", "F", nru, n, &rwork[1], &rwork[*n], &u[u_offset],
 | 
						|
		     ldu);
 | 
						|
	}
 | 
						|
	if (*ncc > 0) {
 | 
						|
	    zlasr_("L", "V", "F", n, ncc, &rwork[1], &rwork[*n], &c__[
 | 
						|
		    c_offset], ldc);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute singular values to relative accuracy TOL */
 | 
						|
/*     (By setting TOL to be negative, algorithm will compute */
 | 
						|
/*     singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
/* Computing MIN */
 | 
						|
    d__3 = 100., d__4 = pow_dd(&eps, &c_b15);
 | 
						|
    d__1 = 10., d__2 = f2cmin(d__3,d__4);
 | 
						|
    tolmul = f2cmax(d__1,d__2);
 | 
						|
    tol = tolmul * eps;
 | 
						|
 | 
						|
/*     Compute approximate maximum, minimum singular values */
 | 
						|
 | 
						|
    smax = 0.;
 | 
						|
    i__1 = *n;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
/* Computing MAX */
 | 
						|
	d__2 = smax, d__3 = (d__1 = d__[i__], abs(d__1));
 | 
						|
	smax = f2cmax(d__2,d__3);
 | 
						|
/* L20: */
 | 
						|
    }
 | 
						|
    i__1 = *n - 1;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
/* Computing MAX */
 | 
						|
	d__2 = smax, d__3 = (d__1 = e[i__], abs(d__1));
 | 
						|
	smax = f2cmax(d__2,d__3);
 | 
						|
/* L30: */
 | 
						|
    }
 | 
						|
    sminl = 0.;
 | 
						|
    if (tol >= 0.) {
 | 
						|
 | 
						|
/*        Relative accuracy desired */
 | 
						|
 | 
						|
	sminoa = abs(d__[1]);
 | 
						|
	if (sminoa == 0.) {
 | 
						|
	    goto L50;
 | 
						|
	}
 | 
						|
	mu = sminoa;
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 2; i__ <= i__1; ++i__) {
 | 
						|
	    mu = (d__2 = d__[i__], abs(d__2)) * (mu / (mu + (d__1 = e[i__ - 1]
 | 
						|
		    , abs(d__1))));
 | 
						|
	    sminoa = f2cmin(sminoa,mu);
 | 
						|
	    if (sminoa == 0.) {
 | 
						|
		goto L50;
 | 
						|
	    }
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
L50:
 | 
						|
	sminoa /= sqrt((doublereal) (*n));
 | 
						|
/* Computing MAX */
 | 
						|
	d__1 = tol * sminoa, d__2 = *n * 6 * *n * unfl;
 | 
						|
	thresh = f2cmax(d__1,d__2);
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Absolute accuracy desired */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
	d__1 = abs(tol) * smax, d__2 = *n * 6 * *n * unfl;
 | 
						|
	thresh = f2cmax(d__1,d__2);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Prepare for main iteration loop for the singular values */
 | 
						|
/*     (MAXIT is the maximum number of passes through the inner */
 | 
						|
/*     loop permitted before nonconvergence signalled.) */
 | 
						|
 | 
						|
    maxit = *n * 6 * *n;
 | 
						|
    iter = 0;
 | 
						|
    oldll = -1;
 | 
						|
    oldm = -1;
 | 
						|
 | 
						|
/*     M points to last element of unconverged part of matrix */
 | 
						|
 | 
						|
    m = *n;
 | 
						|
 | 
						|
/*     Begin main iteration loop */
 | 
						|
 | 
						|
L60:
 | 
						|
 | 
						|
/*     Check for convergence or exceeding iteration count */
 | 
						|
 | 
						|
    if (m <= 1) {
 | 
						|
	goto L160;
 | 
						|
    }
 | 
						|
    if (iter > maxit) {
 | 
						|
	goto L200;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Find diagonal block of matrix to work on */
 | 
						|
 | 
						|
    if (tol < 0. && (d__1 = d__[m], abs(d__1)) <= thresh) {
 | 
						|
	d__[m] = 0.;
 | 
						|
    }
 | 
						|
    smax = (d__1 = d__[m], abs(d__1));
 | 
						|
    smin = smax;
 | 
						|
    i__1 = m - 1;
 | 
						|
    for (lll = 1; lll <= i__1; ++lll) {
 | 
						|
	ll = m - lll;
 | 
						|
	abss = (d__1 = d__[ll], abs(d__1));
 | 
						|
	abse = (d__1 = e[ll], abs(d__1));
 | 
						|
	if (tol < 0. && abss <= thresh) {
 | 
						|
	    d__[ll] = 0.;
 | 
						|
	}
 | 
						|
	if (abse <= thresh) {
 | 
						|
	    goto L80;
 | 
						|
	}
 | 
						|
	smin = f2cmin(smin,abss);
 | 
						|
/* Computing MAX */
 | 
						|
	d__1 = f2cmax(smax,abss);
 | 
						|
	smax = f2cmax(d__1,abse);
 | 
						|
/* L70: */
 | 
						|
    }
 | 
						|
    ll = 0;
 | 
						|
    goto L90;
 | 
						|
L80:
 | 
						|
    e[ll] = 0.;
 | 
						|
 | 
						|
/*     Matrix splits since E(LL) = 0 */
 | 
						|
 | 
						|
    if (ll == m - 1) {
 | 
						|
 | 
						|
/*        Convergence of bottom singular value, return to top of loop */
 | 
						|
 | 
						|
	--m;
 | 
						|
	goto L60;
 | 
						|
    }
 | 
						|
L90:
 | 
						|
    ++ll;
 | 
						|
 | 
						|
/*     E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
 | 
						|
 | 
						|
    if (ll == m - 1) {
 | 
						|
 | 
						|
/*        2 by 2 block, handle separately */
 | 
						|
 | 
						|
	dlasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
 | 
						|
		 &sinl, &cosl);
 | 
						|
	d__[m - 1] = sigmx;
 | 
						|
	e[m - 1] = 0.;
 | 
						|
	d__[m] = sigmn;
 | 
						|
 | 
						|
/*        Compute singular vectors, if desired */
 | 
						|
 | 
						|
	if (*ncvt > 0) {
 | 
						|
	    zdrot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
 | 
						|
		    cosr, &sinr);
 | 
						|
	}
 | 
						|
	if (*nru > 0) {
 | 
						|
	    zdrot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
 | 
						|
		    c__1, &cosl, &sinl);
 | 
						|
	}
 | 
						|
	if (*ncc > 0) {
 | 
						|
	    zdrot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
 | 
						|
		    cosl, &sinl);
 | 
						|
	}
 | 
						|
	m += -2;
 | 
						|
	goto L60;
 | 
						|
    }
 | 
						|
 | 
						|
/*     If working on new submatrix, choose shift direction */
 | 
						|
/*     (from larger end diagonal element towards smaller) */
 | 
						|
 | 
						|
    if (ll > oldm || m < oldll) {
 | 
						|
	if ((d__1 = d__[ll], abs(d__1)) >= (d__2 = d__[m], abs(d__2))) {
 | 
						|
 | 
						|
/*           Chase bulge from top (big end) to bottom (small end) */
 | 
						|
 | 
						|
	    idir = 1;
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Chase bulge from bottom (big end) to top (small end) */
 | 
						|
 | 
						|
	    idir = 2;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Apply convergence tests */
 | 
						|
 | 
						|
    if (idir == 1) {
 | 
						|
 | 
						|
/*        Run convergence test in forward direction */
 | 
						|
/*        First apply standard test to bottom of matrix */
 | 
						|
 | 
						|
	if ((d__2 = e[m - 1], abs(d__2)) <= abs(tol) * (d__1 = d__[m], abs(
 | 
						|
		d__1)) || tol < 0. && (d__3 = e[m - 1], abs(d__3)) <= thresh) 
 | 
						|
		{
 | 
						|
	    e[m - 1] = 0.;
 | 
						|
	    goto L60;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tol >= 0.) {
 | 
						|
 | 
						|
/*           If relative accuracy desired, */
 | 
						|
/*           apply convergence criterion forward */
 | 
						|
 | 
						|
	    mu = (d__1 = d__[ll], abs(d__1));
 | 
						|
	    sminl = mu;
 | 
						|
	    i__1 = m - 1;
 | 
						|
	    for (lll = ll; lll <= i__1; ++lll) {
 | 
						|
		if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
 | 
						|
		    e[lll] = 0.;
 | 
						|
		    goto L60;
 | 
						|
		}
 | 
						|
		mu = (d__2 = d__[lll + 1], abs(d__2)) * (mu / (mu + (d__1 = e[
 | 
						|
			lll], abs(d__1))));
 | 
						|
		sminl = f2cmin(sminl,mu);
 | 
						|
/* L100: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Run convergence test in backward direction */
 | 
						|
/*        First apply standard test to top of matrix */
 | 
						|
 | 
						|
	if ((d__2 = e[ll], abs(d__2)) <= abs(tol) * (d__1 = d__[ll], abs(d__1)
 | 
						|
		) || tol < 0. && (d__3 = e[ll], abs(d__3)) <= thresh) {
 | 
						|
	    e[ll] = 0.;
 | 
						|
	    goto L60;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tol >= 0.) {
 | 
						|
 | 
						|
/*           If relative accuracy desired, */
 | 
						|
/*           apply convergence criterion backward */
 | 
						|
 | 
						|
	    mu = (d__1 = d__[m], abs(d__1));
 | 
						|
	    sminl = mu;
 | 
						|
	    i__1 = ll;
 | 
						|
	    for (lll = m - 1; lll >= i__1; --lll) {
 | 
						|
		if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
 | 
						|
		    e[lll] = 0.;
 | 
						|
		    goto L60;
 | 
						|
		}
 | 
						|
		mu = (d__2 = d__[lll], abs(d__2)) * (mu / (mu + (d__1 = e[lll]
 | 
						|
			, abs(d__1))));
 | 
						|
		sminl = f2cmin(sminl,mu);
 | 
						|
/* L110: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
    oldll = ll;
 | 
						|
    oldm = m;
 | 
						|
 | 
						|
/*     Compute shift.  First, test if shifting would ruin relative */
 | 
						|
/*     accuracy, and if so set the shift to zero. */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
    d__1 = eps, d__2 = tol * .01;
 | 
						|
    if (tol >= 0. && *n * tol * (sminl / smax) <= f2cmax(d__1,d__2)) {
 | 
						|
 | 
						|
/*        Use a zero shift to avoid loss of relative accuracy */
 | 
						|
 | 
						|
	shift = 0.;
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Compute the shift from 2-by-2 block at end of matrix */
 | 
						|
 | 
						|
	if (idir == 1) {
 | 
						|
	    sll = (d__1 = d__[ll], abs(d__1));
 | 
						|
	    dlas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
 | 
						|
	} else {
 | 
						|
	    sll = (d__1 = d__[m], abs(d__1));
 | 
						|
	    dlas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Test if shift negligible, and if so set to zero */
 | 
						|
 | 
						|
	if (sll > 0.) {
 | 
						|
/* Computing 2nd power */
 | 
						|
	    d__1 = shift / sll;
 | 
						|
	    if (d__1 * d__1 < eps) {
 | 
						|
		shift = 0.;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Increment iteration count */
 | 
						|
 | 
						|
    iter = iter + m - ll;
 | 
						|
 | 
						|
/*     If SHIFT = 0, do simplified QR iteration */
 | 
						|
 | 
						|
    if (shift == 0.) {
 | 
						|
	if (idir == 1) {
 | 
						|
 | 
						|
/*           Chase bulge from top to bottom */
 | 
						|
/*           Save cosines and sines for later singular vector updates */
 | 
						|
 | 
						|
	    cs = 1.;
 | 
						|
	    oldcs = 1.;
 | 
						|
	    i__1 = m - 1;
 | 
						|
	    for (i__ = ll; i__ <= i__1; ++i__) {
 | 
						|
		d__1 = d__[i__] * cs;
 | 
						|
		dlartg_(&d__1, &e[i__], &cs, &sn, &r__);
 | 
						|
		if (i__ > ll) {
 | 
						|
		    e[i__ - 1] = oldsn * r__;
 | 
						|
		}
 | 
						|
		d__1 = oldcs * r__;
 | 
						|
		d__2 = d__[i__ + 1] * sn;
 | 
						|
		dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
 | 
						|
		rwork[i__ - ll + 1] = cs;
 | 
						|
		rwork[i__ - ll + 1 + nm1] = sn;
 | 
						|
		rwork[i__ - ll + 1 + nm12] = oldcs;
 | 
						|
		rwork[i__ - ll + 1 + nm13] = oldsn;
 | 
						|
/* L120: */
 | 
						|
	    }
 | 
						|
	    h__ = d__[m] * cs;
 | 
						|
	    d__[m] = h__ * oldcs;
 | 
						|
	    e[m - 1] = h__ * oldsn;
 | 
						|
 | 
						|
/*           Update singular vectors */
 | 
						|
 | 
						|
	    if (*ncvt > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
 | 
						|
			ll + vt_dim1], ldvt);
 | 
						|
	    }
 | 
						|
	    if (*nru > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
 | 
						|
			nm13 + 1], &u[ll * u_dim1 + 1], ldu);
 | 
						|
	    }
 | 
						|
	    if (*ncc > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
 | 
						|
			nm13 + 1], &c__[ll + c_dim1], ldc);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Test convergence */
 | 
						|
 | 
						|
	    if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
 | 
						|
		e[m - 1] = 0.;
 | 
						|
	    }
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Chase bulge from bottom to top */
 | 
						|
/*           Save cosines and sines for later singular vector updates */
 | 
						|
 | 
						|
	    cs = 1.;
 | 
						|
	    oldcs = 1.;
 | 
						|
	    i__1 = ll + 1;
 | 
						|
	    for (i__ = m; i__ >= i__1; --i__) {
 | 
						|
		d__1 = d__[i__] * cs;
 | 
						|
		dlartg_(&d__1, &e[i__ - 1], &cs, &sn, &r__);
 | 
						|
		if (i__ < m) {
 | 
						|
		    e[i__] = oldsn * r__;
 | 
						|
		}
 | 
						|
		d__1 = oldcs * r__;
 | 
						|
		d__2 = d__[i__ - 1] * sn;
 | 
						|
		dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
 | 
						|
		rwork[i__ - ll] = cs;
 | 
						|
		rwork[i__ - ll + nm1] = -sn;
 | 
						|
		rwork[i__ - ll + nm12] = oldcs;
 | 
						|
		rwork[i__ - ll + nm13] = -oldsn;
 | 
						|
/* L130: */
 | 
						|
	    }
 | 
						|
	    h__ = d__[ll] * cs;
 | 
						|
	    d__[ll] = h__ * oldcs;
 | 
						|
	    e[ll] = h__ * oldsn;
 | 
						|
 | 
						|
/*           Update singular vectors */
 | 
						|
 | 
						|
	    if (*ncvt > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
 | 
						|
			nm13 + 1], &vt[ll + vt_dim1], ldvt);
 | 
						|
	    }
 | 
						|
	    if (*nru > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
 | 
						|
			ll * u_dim1 + 1], ldu);
 | 
						|
	    }
 | 
						|
	    if (*ncc > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
 | 
						|
			ll + c_dim1], ldc);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Test convergence */
 | 
						|
 | 
						|
	    if ((d__1 = e[ll], abs(d__1)) <= thresh) {
 | 
						|
		e[ll] = 0.;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Use nonzero shift */
 | 
						|
 | 
						|
	if (idir == 1) {
 | 
						|
 | 
						|
/*           Chase bulge from top to bottom */
 | 
						|
/*           Save cosines and sines for later singular vector updates */
 | 
						|
 | 
						|
	    f = ((d__1 = d__[ll], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[
 | 
						|
		    ll]) + shift / d__[ll]);
 | 
						|
	    g = e[ll];
 | 
						|
	    i__1 = m - 1;
 | 
						|
	    for (i__ = ll; i__ <= i__1; ++i__) {
 | 
						|
		dlartg_(&f, &g, &cosr, &sinr, &r__);
 | 
						|
		if (i__ > ll) {
 | 
						|
		    e[i__ - 1] = r__;
 | 
						|
		}
 | 
						|
		f = cosr * d__[i__] + sinr * e[i__];
 | 
						|
		e[i__] = cosr * e[i__] - sinr * d__[i__];
 | 
						|
		g = sinr * d__[i__ + 1];
 | 
						|
		d__[i__ + 1] = cosr * d__[i__ + 1];
 | 
						|
		dlartg_(&f, &g, &cosl, &sinl, &r__);
 | 
						|
		d__[i__] = r__;
 | 
						|
		f = cosl * e[i__] + sinl * d__[i__ + 1];
 | 
						|
		d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
 | 
						|
		if (i__ < m - 1) {
 | 
						|
		    g = sinl * e[i__ + 1];
 | 
						|
		    e[i__ + 1] = cosl * e[i__ + 1];
 | 
						|
		}
 | 
						|
		rwork[i__ - ll + 1] = cosr;
 | 
						|
		rwork[i__ - ll + 1 + nm1] = sinr;
 | 
						|
		rwork[i__ - ll + 1 + nm12] = cosl;
 | 
						|
		rwork[i__ - ll + 1 + nm13] = sinl;
 | 
						|
/* L140: */
 | 
						|
	    }
 | 
						|
	    e[m - 1] = f;
 | 
						|
 | 
						|
/*           Update singular vectors */
 | 
						|
 | 
						|
	    if (*ncvt > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
 | 
						|
			ll + vt_dim1], ldvt);
 | 
						|
	    }
 | 
						|
	    if (*nru > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
 | 
						|
			nm13 + 1], &u[ll * u_dim1 + 1], ldu);
 | 
						|
	    }
 | 
						|
	    if (*ncc > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
 | 
						|
			nm13 + 1], &c__[ll + c_dim1], ldc);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Test convergence */
 | 
						|
 | 
						|
	    if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
 | 
						|
		e[m - 1] = 0.;
 | 
						|
	    }
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Chase bulge from bottom to top */
 | 
						|
/*           Save cosines and sines for later singular vector updates */
 | 
						|
 | 
						|
	    f = ((d__1 = d__[m], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[m]
 | 
						|
		    ) + shift / d__[m]);
 | 
						|
	    g = e[m - 1];
 | 
						|
	    i__1 = ll + 1;
 | 
						|
	    for (i__ = m; i__ >= i__1; --i__) {
 | 
						|
		dlartg_(&f, &g, &cosr, &sinr, &r__);
 | 
						|
		if (i__ < m) {
 | 
						|
		    e[i__] = r__;
 | 
						|
		}
 | 
						|
		f = cosr * d__[i__] + sinr * e[i__ - 1];
 | 
						|
		e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
 | 
						|
		g = sinr * d__[i__ - 1];
 | 
						|
		d__[i__ - 1] = cosr * d__[i__ - 1];
 | 
						|
		dlartg_(&f, &g, &cosl, &sinl, &r__);
 | 
						|
		d__[i__] = r__;
 | 
						|
		f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
 | 
						|
		d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
 | 
						|
		if (i__ > ll + 1) {
 | 
						|
		    g = sinl * e[i__ - 2];
 | 
						|
		    e[i__ - 2] = cosl * e[i__ - 2];
 | 
						|
		}
 | 
						|
		rwork[i__ - ll] = cosr;
 | 
						|
		rwork[i__ - ll + nm1] = -sinr;
 | 
						|
		rwork[i__ - ll + nm12] = cosl;
 | 
						|
		rwork[i__ - ll + nm13] = -sinl;
 | 
						|
/* L150: */
 | 
						|
	    }
 | 
						|
	    e[ll] = f;
 | 
						|
 | 
						|
/*           Test convergence */
 | 
						|
 | 
						|
	    if ((d__1 = e[ll], abs(d__1)) <= thresh) {
 | 
						|
		e[ll] = 0.;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Update singular vectors if desired */
 | 
						|
 | 
						|
	    if (*ncvt > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
 | 
						|
			nm13 + 1], &vt[ll + vt_dim1], ldvt);
 | 
						|
	    }
 | 
						|
	    if (*nru > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
 | 
						|
			ll * u_dim1 + 1], ldu);
 | 
						|
	    }
 | 
						|
	    if (*ncc > 0) {
 | 
						|
		i__1 = m - ll + 1;
 | 
						|
		zlasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
 | 
						|
			ll + c_dim1], ldc);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     QR iteration finished, go back and check convergence */
 | 
						|
 | 
						|
    goto L60;
 | 
						|
 | 
						|
/*     All singular values converged, so make them positive */
 | 
						|
 | 
						|
L160:
 | 
						|
    i__1 = *n;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	if (d__[i__] < 0.) {
 | 
						|
	    d__[i__] = -d__[i__];
 | 
						|
 | 
						|
/*           Change sign of singular vectors, if desired */
 | 
						|
 | 
						|
	    if (*ncvt > 0) {
 | 
						|
		zdscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
/* L170: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Sort the singular values into decreasing order (insertion sort on */
 | 
						|
/*     singular values, but only one transposition per singular vector) */
 | 
						|
 | 
						|
    i__1 = *n - 1;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
 | 
						|
/*        Scan for smallest D(I) */
 | 
						|
 | 
						|
	isub = 1;
 | 
						|
	smin = d__[1];
 | 
						|
	i__2 = *n + 1 - i__;
 | 
						|
	for (j = 2; j <= i__2; ++j) {
 | 
						|
	    if (d__[j] <= smin) {
 | 
						|
		isub = j;
 | 
						|
		smin = d__[j];
 | 
						|
	    }
 | 
						|
/* L180: */
 | 
						|
	}
 | 
						|
	if (isub != *n + 1 - i__) {
 | 
						|
 | 
						|
/*           Swap singular values and vectors */
 | 
						|
 | 
						|
	    d__[isub] = d__[*n + 1 - i__];
 | 
						|
	    d__[*n + 1 - i__] = smin;
 | 
						|
	    if (*ncvt > 0) {
 | 
						|
		zswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ + 
 | 
						|
			vt_dim1], ldvt);
 | 
						|
	    }
 | 
						|
	    if (*nru > 0) {
 | 
						|
		zswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) * 
 | 
						|
			u_dim1 + 1], &c__1);
 | 
						|
	    }
 | 
						|
	    if (*ncc > 0) {
 | 
						|
		zswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ + 
 | 
						|
			c_dim1], ldc);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
/* L190: */
 | 
						|
    }
 | 
						|
    goto L220;
 | 
						|
 | 
						|
/*     Maximum number of iterations exceeded, failure to converge */
 | 
						|
 | 
						|
L200:
 | 
						|
    *info = 0;
 | 
						|
    i__1 = *n - 1;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	if (e[i__] != 0.) {
 | 
						|
	    ++(*info);
 | 
						|
	}
 | 
						|
/* L210: */
 | 
						|
    }
 | 
						|
L220:
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of ZBDSQR */
 | 
						|
 | 
						|
} /* zbdsqr_ */
 | 
						|
 |