196 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLAUU2 computes the product UUH or LHL, where U and L are upper or lower triangular matrices (unblocked algorithm).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLAUU2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slauu2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slauu2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slauu2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLAUU2( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLAUU2 computes the product U * U**T or L**T * L, where the triangular
 | 
						|
*> factor U or L is stored in the upper or lower triangular part of
 | 
						|
*> the array A.
 | 
						|
*>
 | 
						|
*> If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
 | 
						|
*> overwriting the factor U in A.
 | 
						|
*> If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
 | 
						|
*> overwriting the factor L in A.
 | 
						|
*>
 | 
						|
*> This is the unblocked form of the algorithm, calling Level 2 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the triangular factor stored in the array A
 | 
						|
*>          is upper or lower triangular:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the triangular factor U or L.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the triangular factor U or L.
 | 
						|
*>          On exit, if UPLO = 'U', the upper triangle of A is
 | 
						|
*>          overwritten with the upper triangle of the product U * U**T;
 | 
						|
*>          if UPLO = 'L', the lower triangle of A is overwritten with
 | 
						|
*>          the lower triangle of the product L**T * L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -k, the k-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLAUU2( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            I
 | 
						|
      REAL               AII
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SDOT
 | 
						|
      EXTERNAL           LSAME, SDOT
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMV, SSCAL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLAUU2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Compute the product U * U**T.
 | 
						|
*
 | 
						|
         DO 10 I = 1, N
 | 
						|
            AII = A( I, I )
 | 
						|
            IF( I.LT.N ) THEN
 | 
						|
               A( I, I ) = SDOT( N-I+1, A( I, I ), LDA, A( I, I ), LDA )
 | 
						|
               CALL SGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
 | 
						|
     $                     LDA, A( I, I+1 ), LDA, AII, A( 1, I ), 1 )
 | 
						|
            ELSE
 | 
						|
               CALL SSCAL( I, AII, A( 1, I ), 1 )
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute the product L**T * L.
 | 
						|
*
 | 
						|
         DO 20 I = 1, N
 | 
						|
            AII = A( I, I )
 | 
						|
            IF( I.LT.N ) THEN
 | 
						|
               A( I, I ) = SDOT( N-I+1, A( I, I ), 1, A( I, I ), 1 )
 | 
						|
               CALL SGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
 | 
						|
     $                     A( I+1, I ), 1, AII, A( I, 1 ), LDA )
 | 
						|
            ELSE
 | 
						|
               CALL SSCAL( I, AII, A( I, 1 ), LDA )
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLAUU2
 | 
						|
*
 | 
						|
      END
 |