264 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAGTF computes an LU factorization of a matrix T-λI, where T is a general tridiagonal matrix, and λ a scalar, using partial pivoting with row interchanges.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLAGTF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagtf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagtf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagtf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       DOUBLE PRECISION   LAMBDA, TOL
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IN( * )
 | 
						|
*       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
 | 
						|
*> tridiagonal matrix and lambda is a scalar, as
 | 
						|
*>
 | 
						|
*>    T - lambda*I = PLU,
 | 
						|
*>
 | 
						|
*> where P is a permutation matrix, L is a unit lower tridiagonal matrix
 | 
						|
*> with at most one non-zero sub-diagonal elements per column and U is
 | 
						|
*> an upper triangular matrix with at most two non-zero super-diagonal
 | 
						|
*> elements per column.
 | 
						|
*>
 | 
						|
*> The factorization is obtained by Gaussian elimination with partial
 | 
						|
*> pivoting and implicit row scaling.
 | 
						|
*>
 | 
						|
*> The parameter LAMBDA is included in the routine so that DLAGTF may
 | 
						|
*> be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
 | 
						|
*> inverse iteration.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          On entry, A must contain the diagonal elements of T.
 | 
						|
*>
 | 
						|
*>          On exit, A is overwritten by the n diagonal elements of the
 | 
						|
*>          upper triangular matrix U of the factorization of T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LAMBDA
 | 
						|
*> \verbatim
 | 
						|
*>          LAMBDA is DOUBLE PRECISION
 | 
						|
*>          On entry, the scalar lambda.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          On entry, B must contain the (n-1) super-diagonal elements of
 | 
						|
*>          T.
 | 
						|
*>
 | 
						|
*>          On exit, B is overwritten by the (n-1) super-diagonal
 | 
						|
*>          elements of the matrix U of the factorization of T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          On entry, C must contain the (n-1) sub-diagonal elements of
 | 
						|
*>          T.
 | 
						|
*>
 | 
						|
*>          On exit, C is overwritten by the (n-1) sub-diagonal elements
 | 
						|
*>          of the matrix L of the factorization of T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TOL
 | 
						|
*> \verbatim
 | 
						|
*>          TOL is DOUBLE PRECISION
 | 
						|
*>          On entry, a relative tolerance used to indicate whether or
 | 
						|
*>          not the matrix (T - lambda*I) is nearly singular. TOL should
 | 
						|
*>          normally be chose as approximately the largest relative error
 | 
						|
*>          in the elements of T. For example, if the elements of T are
 | 
						|
*>          correct to about 4 significant figures, then TOL should be
 | 
						|
*>          set to about 5*10**(-4). If TOL is supplied as less than eps,
 | 
						|
*>          where eps is the relative machine precision, then the value
 | 
						|
*>          eps is used in place of TOL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N-2)
 | 
						|
*>          On exit, D is overwritten by the (n-2) second super-diagonal
 | 
						|
*>          elements of the matrix U of the factorization of T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IN
 | 
						|
*> \verbatim
 | 
						|
*>          IN is INTEGER array, dimension (N)
 | 
						|
*>          On exit, IN contains details of the permutation matrix P. If
 | 
						|
*>          an interchange occurred at the kth step of the elimination,
 | 
						|
*>          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
 | 
						|
*>          returns the smallest positive integer j such that
 | 
						|
*>
 | 
						|
*>             abs( u(j,j) ) <= norm( (T - lambda*I)(j) )*TOL,
 | 
						|
*>
 | 
						|
*>          where norm( A(j) ) denotes the sum of the absolute values of
 | 
						|
*>          the jth row of the matrix A. If no such j exists then IN(n)
 | 
						|
*>          is returned as zero. If IN(n) is returned as positive, then a
 | 
						|
*>          diagonal element of U is small, indicating that
 | 
						|
*>          (T - lambda*I) is singular or nearly singular,
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -k, the kth argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, N
 | 
						|
      DOUBLE PRECISION   LAMBDA, TOL
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IN( * )
 | 
						|
      DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            K
 | 
						|
      DOUBLE PRECISION   EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
         CALL XERBLA( 'DLAGTF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      A( 1 ) = A( 1 ) - LAMBDA
 | 
						|
      IN( N ) = 0
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         IF( A( 1 ).EQ.ZERO )
 | 
						|
     $      IN( 1 ) = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
      TL = MAX( TOL, EPS )
 | 
						|
      SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
 | 
						|
      DO 10 K = 1, N - 1
 | 
						|
         A( K+1 ) = A( K+1 ) - LAMBDA
 | 
						|
         SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
 | 
						|
         IF( K.LT.( N-1 ) )
 | 
						|
     $      SCALE2 = SCALE2 + ABS( B( K+1 ) )
 | 
						|
         IF( A( K ).EQ.ZERO ) THEN
 | 
						|
            PIV1 = ZERO
 | 
						|
         ELSE
 | 
						|
            PIV1 = ABS( A( K ) ) / SCALE1
 | 
						|
         END IF
 | 
						|
         IF( C( K ).EQ.ZERO ) THEN
 | 
						|
            IN( K ) = 0
 | 
						|
            PIV2 = ZERO
 | 
						|
            SCALE1 = SCALE2
 | 
						|
            IF( K.LT.( N-1 ) )
 | 
						|
     $         D( K ) = ZERO
 | 
						|
         ELSE
 | 
						|
            PIV2 = ABS( C( K ) ) / SCALE2
 | 
						|
            IF( PIV2.LE.PIV1 ) THEN
 | 
						|
               IN( K ) = 0
 | 
						|
               SCALE1 = SCALE2
 | 
						|
               C( K ) = C( K ) / A( K )
 | 
						|
               A( K+1 ) = A( K+1 ) - C( K )*B( K )
 | 
						|
               IF( K.LT.( N-1 ) )
 | 
						|
     $            D( K ) = ZERO
 | 
						|
            ELSE
 | 
						|
               IN( K ) = 1
 | 
						|
               MULT = A( K ) / C( K )
 | 
						|
               A( K ) = C( K )
 | 
						|
               TEMP = A( K+1 )
 | 
						|
               A( K+1 ) = B( K ) - MULT*TEMP
 | 
						|
               IF( K.LT.( N-1 ) ) THEN
 | 
						|
                  D( K ) = B( K+1 )
 | 
						|
                  B( K+1 ) = -MULT*D( K )
 | 
						|
               END IF
 | 
						|
               B( K ) = TEMP
 | 
						|
               C( K ) = MULT
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
 | 
						|
     $      IN( N ) = K
 | 
						|
   10 CONTINUE
 | 
						|
      IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
 | 
						|
     $   IN( N ) = N
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLAGTF
 | 
						|
*
 | 
						|
      END
 |