253 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			253 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPPCON
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CPPCON + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cppcon.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cppcon.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cppcon.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPPCON( UPLO, N, AP, ANORM, RCOND, WORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       REAL               ANORM, RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            AP( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPPCON estimates the reciprocal of the condition number (in the
 | 
						|
*> 1-norm) of a complex Hermitian positive definite packed matrix using
 | 
						|
*> the Cholesky factorization A = U**H*U or A = L*L**H computed by
 | 
						|
*> CPPTRF.
 | 
						|
*>
 | 
						|
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
 | 
						|
*> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | 
						|
*>          The triangular factor U or L from the Cholesky factorization
 | 
						|
*>          A = U**H*U or A = L*L**H, packed columnwise in a linear
 | 
						|
*>          array.  The j-th column of U or L is stored in the array AP
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ANORM
 | 
						|
*> \verbatim
 | 
						|
*>          ANORM is REAL
 | 
						|
*>          The 1-norm (or infinity-norm) of the Hermitian matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          The reciprocal of the condition number of the matrix A,
 | 
						|
*>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
 | 
						|
*>          estimate of the 1-norm of inv(A) computed in this routine.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPPCON( UPLO, N, AP, ANORM, RCOND, WORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, N
 | 
						|
      REAL               ANORM, RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            AP( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      CHARACTER          NORMIN
 | 
						|
      INTEGER            IX, KASE
 | 
						|
      REAL               AINVNM, SCALE, SCALEL, SCALEU, SMLNUM
 | 
						|
      COMPLEX            ZDUM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ICAMAX
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           LSAME, ICAMAX, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLACN2, CLATPS, CSRSCL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, REAL
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ANORM.LT.ZERO ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CPPCON', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      RCOND = ZERO
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RETURN
 | 
						|
      ELSE IF( ANORM.EQ.ZERO ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      SMLNUM = SLAMCH( 'Safe minimum' )
 | 
						|
*
 | 
						|
*     Estimate the 1-norm of the inverse.
 | 
						|
*
 | 
						|
      KASE = 0
 | 
						|
      NORMIN = 'N'
 | 
						|
   10 CONTINUE
 | 
						|
      CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | 
						|
      IF( KASE.NE.0 ) THEN
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Multiply by inv(U**H).
 | 
						|
*
 | 
						|
            CALL CLATPS( 'Upper', 'Conjugate transpose', 'Non-unit',
 | 
						|
     $                   NORMIN, N, AP, WORK, SCALEL, RWORK, INFO )
 | 
						|
            NORMIN = 'Y'
 | 
						|
*
 | 
						|
*           Multiply by inv(U).
 | 
						|
*
 | 
						|
            CALL CLATPS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
 | 
						|
     $                   AP, WORK, SCALEU, RWORK, INFO )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Multiply by inv(L).
 | 
						|
*
 | 
						|
            CALL CLATPS( 'Lower', 'No transpose', 'Non-unit', NORMIN, N,
 | 
						|
     $                   AP, WORK, SCALEL, RWORK, INFO )
 | 
						|
            NORMIN = 'Y'
 | 
						|
*
 | 
						|
*           Multiply by inv(L**H).
 | 
						|
*
 | 
						|
            CALL CLATPS( 'Lower', 'Conjugate transpose', 'Non-unit',
 | 
						|
     $                   NORMIN, N, AP, WORK, SCALEU, RWORK, INFO )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Multiply by 1/SCALE if doing so will not cause overflow.
 | 
						|
*
 | 
						|
         SCALE = SCALEL*SCALEU
 | 
						|
         IF( SCALE.NE.ONE ) THEN
 | 
						|
            IX = ICAMAX( N, WORK, 1 )
 | 
						|
            IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
 | 
						|
     $         GO TO 20
 | 
						|
            CALL CSRSCL( N, SCALE, WORK, 1 )
 | 
						|
         END IF
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the estimate of the reciprocal condition number.
 | 
						|
*
 | 
						|
      IF( AINVNM.NE.ZERO )
 | 
						|
     $   RCOND = ( ONE / AINVNM ) / ANORM
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPPCON
 | 
						|
*
 | 
						|
      END
 |