192 lines
7.9 KiB
C
192 lines
7.9 KiB
C
/***************************************************************************
|
|
Copyright (c) 2020, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
#include <math.h>
|
|
|
|
#if defined(DOUBLE)
|
|
|
|
#define ABS fabs
|
|
#define RVV_EFLOAT RVV_E64
|
|
#define RVV_M RVV_M8
|
|
#define FLOAT_V_T float64xm8_t
|
|
#define VLEV_FLOAT vlev_float64xm8
|
|
#define VLSEV_FLOAT vlsev_float64xm8
|
|
#define VFREDMAXVS_FLOAT vfredmaxvs_float64xm8
|
|
#define MASK_T e64xm8_t
|
|
#define VMFLTVF_FLOAT vmfltvf_e64xm8_float64xm8
|
|
#define VMFLTVV_FLOAT vmfltvv_e64xm8_float64xm8
|
|
#define VFMVVF_FLOAT vfmvvf_float64xm8
|
|
#define VFRSUBVF_MASK_FLOAT vfrsubvf_mask_float64xm8
|
|
#define VFMAXVV_FLOAT vfmaxvv_float64xm8
|
|
#define VMFGEVF_FLOAT vmfgevf_e64xm8_float64xm8
|
|
#define VMFIRSTM vmfirstm_e64xm8
|
|
#define UINT_V_T uint64xm8_t
|
|
#define VIDV_MASK_UINT vidv_mask_uint64xm8
|
|
#define VIDV_UINT vidv_uint64xm8
|
|
#define VADDVX_MASK_UINT vaddvx_mask_uint64xm8
|
|
#define VADDVX_UINT vaddvx_uint64xm8
|
|
#define VMVVX_UINT vmvvx_uint64xm8
|
|
#else
|
|
|
|
#define ABS fabsf
|
|
#define RVV_EFLOAT RVV_E32
|
|
#define RVV_M RVV_M8
|
|
#define FLOAT_V_T float32xm8_t
|
|
#define VLEV_FLOAT vlev_float32xm8
|
|
#define VLSEV_FLOAT vlsev_float32xm8
|
|
#define VFREDMAXVS_FLOAT vfredmaxvs_float32xm8
|
|
#define MASK_T e32xm8_t
|
|
#define VMFLTVF_FLOAT vmfltvf_e32xm8_float32xm8
|
|
#define VMFLTVV_FLOAT vmfltvv_e32xm8_float32xm8
|
|
#define VFMVVF_FLOAT vfmvvf_float32xm8
|
|
#define VFRSUBVF_MASK_FLOAT vfrsubvf_mask_float32xm8
|
|
#define VFMAXVV_FLOAT vfmaxvv_float32xm8
|
|
#define VMFGEVF_FLOAT vmfgevf_e32xm8_float32xm8
|
|
#define VMFIRSTM vmfirstm_e32xm8
|
|
#define UINT_V_T uint32xm8_t
|
|
#define VIDV_MASK_UINT vidv_mask_uint32xm8
|
|
#define VIDV_UINT vidv_uint32xm8
|
|
#define VADDVX_MASK_UINT vaddvx_mask_uint32xm8
|
|
#define VADDVX_UINT vaddvx_uint32xm8
|
|
#define VMVVX_UINT vmvvx_uint32xm8
|
|
#endif
|
|
|
|
|
|
BLASLONG CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x)
|
|
{
|
|
BLASLONG i=0, j=0;
|
|
FLOAT maxf=0.0;
|
|
unsigned int max_index = 0;
|
|
if (n <= 0 || inc_x <= 0) return(max_index);
|
|
|
|
FLOAT_V_T vx, v_max;
|
|
UINT_V_T v_max_index;
|
|
MASK_T mask;
|
|
unsigned int gvl = 0;
|
|
if(inc_x == 1){
|
|
gvl = vsetvli(n, RVV_EFLOAT, RVV_M);
|
|
v_max_index = VMVVX_UINT(0, gvl);
|
|
v_max = VFMVVF_FLOAT(-1, gvl);
|
|
for(i=0,j=0; i < n/gvl; i++){
|
|
vx = VLEV_FLOAT(&x[j], gvl);
|
|
//fabs(vector)
|
|
mask = VMFLTVF_FLOAT(vx, 0, gvl);
|
|
vx = VFRSUBVF_MASK_FLOAT(vx, vx, 0, mask, gvl);
|
|
|
|
//index where element greater than v_max
|
|
mask = VMFLTVV_FLOAT(v_max, vx, gvl);
|
|
v_max_index = VIDV_MASK_UINT(v_max_index, mask, gvl);
|
|
v_max_index = VADDVX_MASK_UINT(v_max_index, v_max_index, j, mask, gvl);
|
|
|
|
//update v_max and start_index j
|
|
v_max = VFMAXVV_FLOAT(v_max, vx, gvl);
|
|
j += gvl;
|
|
}
|
|
vx = VFMVVF_FLOAT(0, gvl);
|
|
vx = VFREDMAXVS_FLOAT(v_max, vx, gvl);
|
|
maxf = vx[0];
|
|
mask = VMFGEVF_FLOAT(v_max, maxf, gvl);
|
|
max_index = VMFIRSTM(mask,gvl);
|
|
max_index = v_max_index[max_index];
|
|
|
|
if(j < n){
|
|
gvl = vsetvli(n-j, RVV_EFLOAT, RVV_M);
|
|
vx = VLEV_FLOAT(&x[j], gvl);
|
|
//fabs(vector)
|
|
mask = VMFLTVF_FLOAT(vx, 0, gvl);
|
|
v_max = VFRSUBVF_MASK_FLOAT(vx, vx, 0, mask, gvl);
|
|
|
|
vx = VFMVVF_FLOAT(0, gvl);
|
|
vx = VFREDMAXVS_FLOAT(v_max, vx, gvl);
|
|
FLOAT cur_maxf = vx[0];
|
|
if(cur_maxf > maxf){
|
|
//tail index
|
|
v_max_index = VIDV_UINT(gvl);
|
|
v_max_index = VADDVX_UINT(v_max_index, j, gvl);
|
|
|
|
mask = VMFGEVF_FLOAT(v_max, cur_maxf, gvl);
|
|
max_index = VMFIRSTM(mask,gvl);
|
|
max_index = v_max_index[max_index];
|
|
}
|
|
}
|
|
}else{
|
|
gvl = vsetvli(n, RVV_EFLOAT, RVV_M);
|
|
unsigned int stride_x = inc_x * sizeof(FLOAT);
|
|
unsigned int idx = 0, inc_v = gvl * inc_x;
|
|
|
|
v_max_index = VMVVX_UINT(0, gvl);
|
|
v_max = VFMVVF_FLOAT(-1, gvl);
|
|
for(i=0,j=0; i < n/gvl; i++){
|
|
vx = VLSEV_FLOAT(&x[idx], stride_x, gvl);
|
|
//fabs(vector)
|
|
mask = VMFLTVF_FLOAT(vx, 0, gvl);
|
|
vx = VFRSUBVF_MASK_FLOAT(vx, vx, 0, mask, gvl);
|
|
|
|
//index where element greater than v_max
|
|
mask = VMFLTVV_FLOAT(v_max, vx, gvl);
|
|
v_max_index = VIDV_MASK_UINT(v_max_index, mask, gvl);
|
|
v_max_index = VADDVX_MASK_UINT(v_max_index, v_max_index, j, mask, gvl);
|
|
|
|
//update v_max and start_index j
|
|
v_max = VFMAXVV_FLOAT(v_max, vx, gvl);
|
|
j += gvl;
|
|
idx += inc_v;
|
|
}
|
|
vx = VFMVVF_FLOAT(0, gvl);
|
|
vx = VFREDMAXVS_FLOAT(v_max, vx, gvl);
|
|
maxf = vx[0];
|
|
mask = VMFGEVF_FLOAT(v_max, maxf, gvl);
|
|
max_index = VMFIRSTM(mask,gvl);
|
|
max_index = v_max_index[max_index];
|
|
|
|
if(j < n){
|
|
gvl = vsetvli(n-j, RVV_EFLOAT, RVV_M);
|
|
vx = VLSEV_FLOAT(&x[idx], stride_x, gvl);
|
|
//fabs(vector)
|
|
mask = VMFLTVF_FLOAT(vx, 0, gvl);
|
|
v_max = VFRSUBVF_MASK_FLOAT(vx, vx, 0, mask, gvl);
|
|
|
|
vx = VFMVVF_FLOAT(0, gvl);
|
|
vx = VFREDMAXVS_FLOAT(v_max, vx, gvl);
|
|
FLOAT cur_maxf = vx[0];
|
|
if(cur_maxf > maxf){
|
|
//tail index
|
|
v_max_index = VIDV_UINT(gvl);
|
|
v_max_index = VADDVX_UINT(v_max_index, j, gvl);
|
|
|
|
mask = VMFGEVF_FLOAT(v_max, cur_maxf, gvl);
|
|
max_index = VMFIRSTM(mask,gvl);
|
|
max_index = v_max_index[max_index];
|
|
}
|
|
}
|
|
}
|
|
return(max_index+1);
|
|
}
|
|
|
|
|