408 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			408 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLA_GBAMV performs a matrix-vector operation to calculate error bounds.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLA_GBAMV + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_gbamv.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_gbamv.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_gbamv.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
 | 
						|
*                             INCX, BETA, Y, INCY )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL               ALPHA, BETA
 | 
						|
*       INTEGER            INCX, INCY, LDAB, M, N, KL, KU, TRANS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               AB( LDAB, * ), X( * ), Y( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLA_GBAMV  performs one of the matrix-vector operations
 | 
						|
*>
 | 
						|
*>         y := alpha*abs(A)*abs(x) + beta*abs(y),
 | 
						|
*>    or   y := alpha*abs(A)**T*abs(x) + beta*abs(y),
 | 
						|
*>
 | 
						|
*> where alpha and beta are scalars, x and y are vectors and A is an
 | 
						|
*> m by n matrix.
 | 
						|
*>
 | 
						|
*> This function is primarily used in calculating error bounds.
 | 
						|
*> To protect against underflow during evaluation, components in
 | 
						|
*> the resulting vector are perturbed away from zero by (N+1)
 | 
						|
*> times the underflow threshold.  To prevent unnecessarily large
 | 
						|
*> errors for block-structure embedded in general matrices,
 | 
						|
*> "symbolically" zero components are not perturbed.  A zero
 | 
						|
*> entry is considered "symbolic" if all multiplications involved
 | 
						|
*> in computing that entry have at least one zero multiplicand.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is INTEGER
 | 
						|
*>           On entry, TRANS specifies the operation to be performed as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
 | 
						|
*>             BLAS_TRANS         y := alpha*abs(A**T)*abs(x) + beta*abs(y)
 | 
						|
*>             BLAS_CONJ_TRANS    y := alpha*abs(A**T)*abs(x) + beta*abs(y)
 | 
						|
*>
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>           On entry, M specifies the number of rows of the matrix A.
 | 
						|
*>           M must be at least zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the number of columns of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>           The number of subdiagonals within the band of A.  KL >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>           The number of superdiagonals within the band of A.  KU >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is REAL
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is REAL array, dimension ( LDAB, n )
 | 
						|
*>           Before entry, the leading m by n part of the array AB must
 | 
						|
*>           contain the matrix of coefficients.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of AB as declared
 | 
						|
*>           in the calling (sub) program. LDAB must be at least
 | 
						|
*>           max( 1, m ).
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension
 | 
						|
*>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
 | 
						|
*>           and at least
 | 
						|
*>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
 | 
						|
*>           Before entry, the incremented array X must contain the
 | 
						|
*>           vector x.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>           On entry, INCX specifies the increment for the elements of
 | 
						|
*>           X. INCX must not be zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is REAL
 | 
						|
*>           On entry, BETA specifies the scalar beta. When BETA is
 | 
						|
*>           supplied as zero then Y need not be set on input.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Y
 | 
						|
*> \verbatim
 | 
						|
*>          Y is REAL array, dimension
 | 
						|
*>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
 | 
						|
*>           and at least
 | 
						|
*>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
 | 
						|
*>           Before entry with BETA non-zero, the incremented array Y
 | 
						|
*>           must contain the vector y. On exit, Y is overwritten by the
 | 
						|
*>           updated vector y.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCY
 | 
						|
*> \verbatim
 | 
						|
*>          INCY is INTEGER
 | 
						|
*>           On entry, INCY specifies the increment for the elements of
 | 
						|
*>           Y. INCY must not be zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*>
 | 
						|
*>  Level 2 Blas routine.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realGBcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
 | 
						|
     $                      INCX, BETA, Y, INCY )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL               ALPHA, BETA
 | 
						|
      INTEGER            INCX, INCY, LDAB, M, N, KL, KU, TRANS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               AB( LDAB, * ), X( * ), Y( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            SYMB_ZERO
 | 
						|
      REAL               TEMP, SAFE1
 | 
						|
      INTEGER            I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, SLAMCH
 | 
						|
      REAL               SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      EXTERNAL           ILATRANS
 | 
						|
      INTEGER            ILATRANS
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, ABS, SIGN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF     ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
 | 
						|
     $           .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
 | 
						|
     $           .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( M.LT.0 )THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( N.LT.0 )THEN
 | 
						|
         INFO = 3
 | 
						|
      ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
 | 
						|
         INFO = 4
 | 
						|
      ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
 | 
						|
         INFO = 5
 | 
						|
      ELSE IF( LDAB.LT.KL+KU+1 )THEN
 | 
						|
         INFO = 6
 | 
						|
      ELSE IF( INCX.EQ.0 )THEN
 | 
						|
         INFO = 8
 | 
						|
      ELSE IF( INCY.EQ.0 )THEN
 | 
						|
         INFO = 11
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 )THEN
 | 
						|
         CALL XERBLA( 'SLA_GBAMV ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
 | 
						|
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
 | 
						|
*     up the start points in  X  and  Y.
 | 
						|
*
 | 
						|
      IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
 | 
						|
         LENX = N
 | 
						|
         LENY = M
 | 
						|
      ELSE
 | 
						|
         LENX = M
 | 
						|
         LENY = N
 | 
						|
      END IF
 | 
						|
      IF( INCX.GT.0 )THEN
 | 
						|
         KX = 1
 | 
						|
      ELSE
 | 
						|
         KX = 1 - ( LENX - 1 )*INCX
 | 
						|
      END IF
 | 
						|
      IF( INCY.GT.0 )THEN
 | 
						|
         KY = 1
 | 
						|
      ELSE
 | 
						|
         KY = 1 - ( LENY - 1 )*INCY
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Set SAFE1 essentially to be the underflow threshold times the
 | 
						|
*     number of additions in each row.
 | 
						|
*
 | 
						|
      SAFE1 = SLAMCH( 'Safe minimum' )
 | 
						|
      SAFE1 = (N+1)*SAFE1
 | 
						|
*
 | 
						|
*     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
 | 
						|
*
 | 
						|
*     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
 | 
						|
*     the inexact flag.  Still doesn't help change the iteration order
 | 
						|
*     to per-column.
 | 
						|
*
 | 
						|
      KD = KU + 1
 | 
						|
      KE = KL + 1
 | 
						|
      IY = KY
 | 
						|
      IF ( INCX.EQ.1 ) THEN
 | 
						|
         IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
 | 
						|
            DO I = 1, LENY
 | 
						|
               IF ( BETA .EQ. ZERO ) THEN
 | 
						|
                  SYMB_ZERO = .TRUE.
 | 
						|
                  Y( IY ) = 0.0
 | 
						|
               ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
 | 
						|
                  SYMB_ZERO = .TRUE.
 | 
						|
               ELSE
 | 
						|
                  SYMB_ZERO = .FALSE.
 | 
						|
                  Y( IY ) = BETA * ABS( Y( IY ) )
 | 
						|
               END IF
 | 
						|
               IF ( ALPHA .NE. ZERO ) THEN
 | 
						|
                  DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
 | 
						|
                     TEMP = ABS( AB( KD+I-J, J ) )
 | 
						|
                     SYMB_ZERO = SYMB_ZERO .AND.
 | 
						|
     $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | 
						|
 | 
						|
                     Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
 | 
						|
               IF ( .NOT.SYMB_ZERO )
 | 
						|
     $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | 
						|
               IY = IY + INCY
 | 
						|
            END DO
 | 
						|
         ELSE
 | 
						|
            DO I = 1, LENY
 | 
						|
               IF ( BETA .EQ. ZERO ) THEN
 | 
						|
                  SYMB_ZERO = .TRUE.
 | 
						|
                  Y( IY ) = 0.0
 | 
						|
               ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
 | 
						|
                  SYMB_ZERO = .TRUE.
 | 
						|
               ELSE
 | 
						|
                  SYMB_ZERO = .FALSE.
 | 
						|
                  Y( IY ) = BETA * ABS( Y( IY ) )
 | 
						|
               END IF
 | 
						|
               IF ( ALPHA .NE. ZERO ) THEN
 | 
						|
                  DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
 | 
						|
                     TEMP = ABS( AB( KE-I+J, I ) )
 | 
						|
                     SYMB_ZERO = SYMB_ZERO .AND.
 | 
						|
     $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | 
						|
 | 
						|
                     Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
 | 
						|
               IF ( .NOT.SYMB_ZERO )
 | 
						|
     $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | 
						|
               IY = IY + INCY
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
 | 
						|
            DO I = 1, LENY
 | 
						|
               IF ( BETA .EQ. ZERO ) THEN
 | 
						|
                  SYMB_ZERO = .TRUE.
 | 
						|
                  Y( IY ) = 0.0
 | 
						|
               ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
 | 
						|
                  SYMB_ZERO = .TRUE.
 | 
						|
               ELSE
 | 
						|
                  SYMB_ZERO = .FALSE.
 | 
						|
                  Y( IY ) = BETA * ABS( Y( IY ) )
 | 
						|
               END IF
 | 
						|
               IF ( ALPHA .NE. ZERO ) THEN
 | 
						|
                  JX = KX
 | 
						|
                  DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
 | 
						|
                     TEMP = ABS( AB( KD+I-J, J ) )
 | 
						|
                     SYMB_ZERO = SYMB_ZERO .AND.
 | 
						|
     $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | 
						|
 | 
						|
                     Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
 | 
						|
                     JX = JX + INCX
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
 | 
						|
               IF ( .NOT.SYMB_ZERO )
 | 
						|
     $           Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | 
						|
 | 
						|
               IY = IY + INCY
 | 
						|
            END DO
 | 
						|
         ELSE
 | 
						|
            DO I = 1, LENY
 | 
						|
               IF ( BETA .EQ. ZERO ) THEN
 | 
						|
                  SYMB_ZERO = .TRUE.
 | 
						|
                  Y( IY ) = 0.0
 | 
						|
               ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
 | 
						|
                  SYMB_ZERO = .TRUE.
 | 
						|
               ELSE
 | 
						|
                  SYMB_ZERO = .FALSE.
 | 
						|
                  Y( IY ) = BETA * ABS( Y( IY ) )
 | 
						|
               END IF
 | 
						|
               IF ( ALPHA .NE. ZERO ) THEN
 | 
						|
                  JX = KX
 | 
						|
                  DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
 | 
						|
                     TEMP = ABS( AB( KE-I+J, I ) )
 | 
						|
                     SYMB_ZERO = SYMB_ZERO .AND.
 | 
						|
     $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
 | 
						|
 | 
						|
                     Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
 | 
						|
                     JX = JX + INCX
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
 | 
						|
               IF ( .NOT.SYMB_ZERO )
 | 
						|
     $           Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
 | 
						|
 | 
						|
               IY = IY + INCY
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLA_GBAMV
 | 
						|
*
 | 
						|
      END
 |