686 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			686 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLA_GERFSX_EXTENDED improves the computed solution to a system of linear equations for general matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLA_GERFSX_EXTENDED + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
 | |
| *                                       LDA, AF, LDAF, IPIV, COLEQU, C, B,
 | |
| *                                       LDB, Y, LDY, BERR_OUT, N_NORMS,
 | |
| *                                       ERRS_N, ERRS_C, RES, AYB, DY,
 | |
| *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
 | |
| *                                       DZ_UB, IGNORE_CWISE, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
 | |
| *      $                   TRANS_TYPE, N_NORMS, ITHRESH
 | |
| *       LOGICAL            COLEQU, IGNORE_CWISE
 | |
| *       DOUBLE PRECISION   RTHRESH, DZ_UB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 | |
| *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
 | |
| *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
 | |
| *      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>
 | |
| *> DLA_GERFSX_EXTENDED improves the computed solution to a system of
 | |
| *> linear equations by performing extra-precise iterative refinement
 | |
| *> and provides error bounds and backward error estimates for the solution.
 | |
| *> This subroutine is called by DGERFSX to perform iterative refinement.
 | |
| *> In addition to normwise error bound, the code provides maximum
 | |
| *> componentwise error bound if possible. See comments for ERRS_N
 | |
| *> and ERRS_C for details of the error bounds. Note that this
 | |
| *> subroutine is only responsible for setting the second fields of
 | |
| *> ERRS_N and ERRS_C.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] PREC_TYPE
 | |
| *> \verbatim
 | |
| *>          PREC_TYPE is INTEGER
 | |
| *>     Specifies the intermediate precision to be used in refinement.
 | |
| *>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
 | |
| *>          = 'S':  Single
 | |
| *>          = 'D':  Double
 | |
| *>          = 'I':  Indigenous
 | |
| *>          = 'X' or 'E':  Extra
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS_TYPE
 | |
| *> \verbatim
 | |
| *>          TRANS_TYPE is INTEGER
 | |
| *>     Specifies the transposition operation on A.
 | |
| *>     The value is defined by ILATRANS(T) where T is a CHARACTER and T
 | |
| *>          = 'N':  No transpose
 | |
| *>          = 'T':  Transpose
 | |
| *>          = 'C':  Conjugate transpose
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>     The number of linear equations, i.e., the order of the
 | |
| *>     matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>     The number of right-hand-sides, i.e., the number of columns of the
 | |
| *>     matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>     On entry, the N-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>     The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
 | |
| *>     The factors L and U from the factorization
 | |
| *>     A = P*L*U as computed by DGETRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAF
 | |
| *> \verbatim
 | |
| *>          LDAF is INTEGER
 | |
| *>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>     The pivot indices from the factorization A = P*L*U
 | |
| *>     as computed by DGETRF; row i of the matrix was interchanged
 | |
| *>     with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] COLEQU
 | |
| *> \verbatim
 | |
| *>          COLEQU is LOGICAL
 | |
| *>     If .TRUE. then column equilibration was done to A before calling
 | |
| *>     this routine. This is needed to compute the solution and error
 | |
| *>     bounds correctly.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension (N)
 | |
| *>     The column scale factors for A. If COLEQU = .FALSE., C
 | |
| *>     is not accessed. If C is input, each element of C should be a power
 | |
| *>     of the radix to ensure a reliable solution and error estimates.
 | |
| *>     Scaling by powers of the radix does not cause rounding errors unless
 | |
| *>     the result underflows or overflows. Rounding errors during scaling
 | |
| *>     lead to refining with a matrix that is not equivalent to the
 | |
| *>     input matrix, producing error estimates that may not be
 | |
| *>     reliable.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>     The right-hand-side matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>     The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is DOUBLE PRECISION array, dimension (LDY,NRHS)
 | |
| *>     On entry, the solution matrix X, as computed by DGETRS.
 | |
| *>     On exit, the improved solution matrix Y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDY
 | |
| *> \verbatim
 | |
| *>          LDY is INTEGER
 | |
| *>     The leading dimension of the array Y.  LDY >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BERR_OUT
 | |
| *> \verbatim
 | |
| *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>     On exit, BERR_OUT(j) contains the componentwise relative backward
 | |
| *>     error for right-hand-side j from the formula
 | |
| *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
 | |
| *>     where abs(Z) is the componentwise absolute value of the matrix
 | |
| *>     or vector Z. This is computed by DLA_LIN_BERR.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N_NORMS
 | |
| *> \verbatim
 | |
| *>          N_NORMS is INTEGER
 | |
| *>     Determines which error bounds to return (see ERRS_N
 | |
| *>     and ERRS_C).
 | |
| *>     If N_NORMS >= 1 return normwise error bounds.
 | |
| *>     If N_NORMS >= 2 return componentwise error bounds.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ERRS_N
 | |
| *> \verbatim
 | |
| *>          ERRS_N is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
 | |
| *>     For each right-hand side, this array contains information about
 | |
| *>     various error bounds and condition numbers corresponding to the
 | |
| *>     normwise relative error, which is defined as follows:
 | |
| *>
 | |
| *>     Normwise relative error in the ith solution vector:
 | |
| *>             max_j (abs(XTRUE(j,i) - X(j,i)))
 | |
| *>            ------------------------------
 | |
| *>                  max_j abs(X(j,i))
 | |
| *>
 | |
| *>     The array is indexed by the type of error information as described
 | |
| *>     below. There currently are up to three pieces of information
 | |
| *>     returned.
 | |
| *>
 | |
| *>     The first index in ERRS_N(i,:) corresponds to the ith
 | |
| *>     right-hand side.
 | |
| *>
 | |
| *>     The second index in ERRS_N(:,err) contains the following
 | |
| *>     three fields:
 | |
| *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
 | |
| *>              reciprocal condition number is less than the threshold
 | |
| *>              sqrt(n) * slamch('Epsilon').
 | |
| *>
 | |
| *>     err = 2 "Guaranteed" error bound: The estimated forward error,
 | |
| *>              almost certainly within a factor of 10 of the true error
 | |
| *>              so long as the next entry is greater than the threshold
 | |
| *>              sqrt(n) * slamch('Epsilon'). This error bound should only
 | |
| *>              be trusted if the previous boolean is true.
 | |
| *>
 | |
| *>     err = 3  Reciprocal condition number: Estimated normwise
 | |
| *>              reciprocal condition number.  Compared with the threshold
 | |
| *>              sqrt(n) * slamch('Epsilon') to determine if the error
 | |
| *>              estimate is "guaranteed". These reciprocal condition
 | |
| *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
 | |
| *>              appropriately scaled matrix Z.
 | |
| *>              Let Z = S*A, where S scales each row by a power of the
 | |
| *>              radix so all absolute row sums of Z are approximately 1.
 | |
| *>
 | |
| *>     This subroutine is only responsible for setting the second field
 | |
| *>     above.
 | |
| *>     See Lapack Working Note 165 for further details and extra
 | |
| *>     cautions.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ERRS_C
 | |
| *> \verbatim
 | |
| *>          ERRS_C is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
 | |
| *>     For each right-hand side, this array contains information about
 | |
| *>     various error bounds and condition numbers corresponding to the
 | |
| *>     componentwise relative error, which is defined as follows:
 | |
| *>
 | |
| *>     Componentwise relative error in the ith solution vector:
 | |
| *>                    abs(XTRUE(j,i) - X(j,i))
 | |
| *>             max_j ----------------------
 | |
| *>                         abs(X(j,i))
 | |
| *>
 | |
| *>     The array is indexed by the right-hand side i (on which the
 | |
| *>     componentwise relative error depends), and the type of error
 | |
| *>     information as described below. There currently are up to three
 | |
| *>     pieces of information returned for each right-hand side. If
 | |
| *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
 | |
| *>     ERRS_C is not accessed.  If N_ERR_BNDS < 3, then at most
 | |
| *>     the first (:,N_ERR_BNDS) entries are returned.
 | |
| *>
 | |
| *>     The first index in ERRS_C(i,:) corresponds to the ith
 | |
| *>     right-hand side.
 | |
| *>
 | |
| *>     The second index in ERRS_C(:,err) contains the following
 | |
| *>     three fields:
 | |
| *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
 | |
| *>              reciprocal condition number is less than the threshold
 | |
| *>              sqrt(n) * slamch('Epsilon').
 | |
| *>
 | |
| *>     err = 2 "Guaranteed" error bound: The estimated forward error,
 | |
| *>              almost certainly within a factor of 10 of the true error
 | |
| *>              so long as the next entry is greater than the threshold
 | |
| *>              sqrt(n) * slamch('Epsilon'). This error bound should only
 | |
| *>              be trusted if the previous boolean is true.
 | |
| *>
 | |
| *>     err = 3  Reciprocal condition number: Estimated componentwise
 | |
| *>              reciprocal condition number.  Compared with the threshold
 | |
| *>              sqrt(n) * slamch('Epsilon') to determine if the error
 | |
| *>              estimate is "guaranteed". These reciprocal condition
 | |
| *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
 | |
| *>              appropriately scaled matrix Z.
 | |
| *>              Let Z = S*(A*diag(x)), where x is the solution for the
 | |
| *>              current right-hand side and S scales each row of
 | |
| *>              A*diag(x) by a power of the radix so all absolute row
 | |
| *>              sums of Z are approximately 1.
 | |
| *>
 | |
| *>     This subroutine is only responsible for setting the second field
 | |
| *>     above.
 | |
| *>     See Lapack Working Note 165 for further details and extra
 | |
| *>     cautions.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RES
 | |
| *> \verbatim
 | |
| *>          RES is DOUBLE PRECISION array, dimension (N)
 | |
| *>     Workspace to hold the intermediate residual.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AYB
 | |
| *> \verbatim
 | |
| *>          AYB is DOUBLE PRECISION array, dimension (N)
 | |
| *>     Workspace. This can be the same workspace passed for Y_TAIL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DY
 | |
| *> \verbatim
 | |
| *>          DY is DOUBLE PRECISION array, dimension (N)
 | |
| *>     Workspace to hold the intermediate solution.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Y_TAIL
 | |
| *> \verbatim
 | |
| *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
 | |
| *>     Workspace to hold the trailing bits of the intermediate solution.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>     Reciprocal scaled condition number.  This is an estimate of the
 | |
| *>     reciprocal Skeel condition number of the matrix A after
 | |
| *>     equilibration (if done).  If this is less than the machine
 | |
| *>     precision (in particular, if it is zero), the matrix is singular
 | |
| *>     to working precision.  Note that the error may still be small even
 | |
| *>     if this number is very small and the matrix appears ill-
 | |
| *>     conditioned.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ITHRESH
 | |
| *> \verbatim
 | |
| *>          ITHRESH is INTEGER
 | |
| *>     The maximum number of residual computations allowed for
 | |
| *>     refinement. The default is 10. For 'aggressive' set to 100 to
 | |
| *>     permit convergence using approximate factorizations or
 | |
| *>     factorizations other than LU. If the factorization uses a
 | |
| *>     technique other than Gaussian elimination, the guarantees in
 | |
| *>     ERRS_N and ERRS_C may no longer be trustworthy.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RTHRESH
 | |
| *> \verbatim
 | |
| *>          RTHRESH is DOUBLE PRECISION
 | |
| *>     Determines when to stop refinement if the error estimate stops
 | |
| *>     decreasing. Refinement will stop when the next solution no longer
 | |
| *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
 | |
| *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
 | |
| *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
 | |
| *>     convergence on extremely ill-conditioned matrices. See LAWN 165
 | |
| *>     for more details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DZ_UB
 | |
| *> \verbatim
 | |
| *>          DZ_UB is DOUBLE PRECISION
 | |
| *>     Determines when to start considering componentwise convergence.
 | |
| *>     Componentwise convergence is only considered after each component
 | |
| *>     of the solution Y is stable, which we define as the relative
 | |
| *>     change in each component being less than DZ_UB. The default value
 | |
| *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
 | |
| *>     more details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IGNORE_CWISE
 | |
| *> \verbatim
 | |
| *>          IGNORE_CWISE is LOGICAL
 | |
| *>     If .TRUE. then ignore componentwise convergence. Default value
 | |
| *>     is .FALSE..
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>       = 0:  Successful exit.
 | |
| *>       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
 | |
| *>             value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
 | |
|      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
 | |
|      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
 | |
|      $                                ERRS_N, ERRS_C, RES, AYB, DY,
 | |
|      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
 | |
|      $                                DZ_UB, IGNORE_CWISE, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
 | |
|      $                   TRANS_TYPE, N_NORMS, ITHRESH
 | |
|       LOGICAL            COLEQU, IGNORE_CWISE
 | |
|       DOUBLE PRECISION   RTHRESH, DZ_UB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 | |
|      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
 | |
|       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
 | |
|      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
 | |
|       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
 | |
|      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
 | |
|      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
 | |
|      $                   EPS, HUGEVAL, INCR_THRESH
 | |
|       LOGICAL            INCR_PREC
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
 | |
|      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
 | |
|      $                   EXTRA_Y
 | |
|       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
 | |
|      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
 | |
|       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
 | |
|      $                   EXTRA_Y = 2 )
 | |
|       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
 | |
|       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
 | |
|       INTEGER            CMP_ERR_I, PIV_GROWTH_I
 | |
|       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
 | |
|      $                   BERR_I = 3 )
 | |
|       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
 | |
|       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
 | |
|      $                   PIV_GROWTH_I = 9 )
 | |
|       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
 | |
|      $                   LA_LINRX_CWISE_I
 | |
|       PARAMETER          ( LA_LINRX_ITREF_I = 1,
 | |
|      $                   LA_LINRX_ITHRESH_I = 2 )
 | |
|       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
 | |
|       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
 | |
|      $                   LA_LINRX_RCOND_I
 | |
|       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
 | |
|       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
 | |
|      $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
 | |
|      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       CHARACTER          CHLA_TRANSTYPE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF ( INFO.NE.0 ) RETURN
 | |
|       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       HUGEVAL = DLAMCH( 'Overflow' )
 | |
| *     Force HUGEVAL to Inf
 | |
|       HUGEVAL = HUGEVAL * HUGEVAL
 | |
| *     Using HUGEVAL may lead to spurious underflows.
 | |
|       INCR_THRESH = DBLE( N ) * EPS
 | |
| *
 | |
|       DO J = 1, NRHS
 | |
|          Y_PREC_STATE = EXTRA_RESIDUAL
 | |
|          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
 | |
|             DO I = 1, N
 | |
|                Y_TAIL( I ) = 0.0D+0
 | |
|             END DO
 | |
|          END IF
 | |
| 
 | |
|          DXRAT = 0.0D+0
 | |
|          DXRATMAX = 0.0D+0
 | |
|          DZRAT = 0.0D+0
 | |
|          DZRATMAX = 0.0D+0
 | |
|          FINAL_DX_X = HUGEVAL
 | |
|          FINAL_DZ_Z = HUGEVAL
 | |
|          PREVNORMDX = HUGEVAL
 | |
|          PREV_DZ_Z = HUGEVAL
 | |
|          DZ_Z = HUGEVAL
 | |
|          DX_X = HUGEVAL
 | |
| 
 | |
|          X_STATE = WORKING_STATE
 | |
|          Z_STATE = UNSTABLE_STATE
 | |
|          INCR_PREC = .FALSE.
 | |
| 
 | |
|          DO CNT = 1, ITHRESH
 | |
| *
 | |
| *         Compute residual RES = B_s - op(A_s) * Y,
 | |
| *             op(A) = A, A**T, or A**H depending on TRANS (and type).
 | |
| *
 | |
|             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
 | |
|             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
 | |
|                CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
 | |
|      $              1.0D+0, RES, 1 )
 | |
|             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
 | |
|                CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
 | |
|      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
 | |
|             ELSE
 | |
|                CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
 | |
|      $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
 | |
|             END IF
 | |
| 
 | |
| !        XXX: RES is no longer needed.
 | |
|             CALL DCOPY( N, RES, 1, DY, 1 )
 | |
|             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
 | |
| *
 | |
| *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
 | |
| *
 | |
|             NORMX = 0.0D+0
 | |
|             NORMY = 0.0D+0
 | |
|             NORMDX = 0.0D+0
 | |
|             DZ_Z = 0.0D+0
 | |
|             YMIN = HUGEVAL
 | |
| *
 | |
|             DO I = 1, N
 | |
|                YK = ABS( Y( I, J ) )
 | |
|                DYK = ABS( DY( I ) )
 | |
| 
 | |
|                IF ( YK .NE. 0.0D+0 ) THEN
 | |
|                   DZ_Z = MAX( DZ_Z, DYK / YK )
 | |
|                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
 | |
|                   DZ_Z = HUGEVAL
 | |
|                END IF
 | |
| 
 | |
|                YMIN = MIN( YMIN, YK )
 | |
| 
 | |
|                NORMY = MAX( NORMY, YK )
 | |
| 
 | |
|                IF ( COLEQU ) THEN
 | |
|                   NORMX = MAX( NORMX, YK * C( I ) )
 | |
|                   NORMDX = MAX( NORMDX, DYK * C( I ) )
 | |
|                ELSE
 | |
|                   NORMX = NORMY
 | |
|                   NORMDX = MAX( NORMDX, DYK )
 | |
|                END IF
 | |
|             END DO
 | |
| 
 | |
|             IF ( NORMX .NE. 0.0D+0 ) THEN
 | |
|                DX_X = NORMDX / NORMX
 | |
|             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
 | |
|                DX_X = 0.0D+0
 | |
|             ELSE
 | |
|                DX_X = HUGEVAL
 | |
|             END IF
 | |
| 
 | |
|             DXRAT = NORMDX / PREVNORMDX
 | |
|             DZRAT = DZ_Z / PREV_DZ_Z
 | |
| *
 | |
| *         Check termination criteria
 | |
| *
 | |
|             IF (.NOT.IGNORE_CWISE
 | |
|      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
 | |
|      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
 | |
|      $           INCR_PREC = .TRUE.
 | |
| 
 | |
|             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
 | |
|      $           X_STATE = WORKING_STATE
 | |
|             IF ( X_STATE .EQ. WORKING_STATE ) THEN
 | |
|                IF ( DX_X .LE. EPS ) THEN
 | |
|                   X_STATE = CONV_STATE
 | |
|                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
 | |
|                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
 | |
|                      INCR_PREC = .TRUE.
 | |
|                   ELSE
 | |
|                      X_STATE = NOPROG_STATE
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
 | |
|                END IF
 | |
|                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
 | |
|             END IF
 | |
| 
 | |
|             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
 | |
|      $           Z_STATE = WORKING_STATE
 | |
|             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
 | |
|      $           Z_STATE = WORKING_STATE
 | |
|             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
 | |
|                IF ( DZ_Z .LE. EPS ) THEN
 | |
|                   Z_STATE = CONV_STATE
 | |
|                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
 | |
|                   Z_STATE = UNSTABLE_STATE
 | |
|                   DZRATMAX = 0.0D+0
 | |
|                   FINAL_DZ_Z = HUGEVAL
 | |
|                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
 | |
|                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
 | |
|                      INCR_PREC = .TRUE.
 | |
|                   ELSE
 | |
|                      Z_STATE = NOPROG_STATE
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
 | |
|                END IF
 | |
|                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
 | |
|             END IF
 | |
| *
 | |
| *           Exit if both normwise and componentwise stopped working,
 | |
| *           but if componentwise is unstable, let it go at least two
 | |
| *           iterations.
 | |
| *
 | |
|             IF ( X_STATE.NE.WORKING_STATE ) THEN
 | |
|                IF ( IGNORE_CWISE) GOTO 666
 | |
|                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
 | |
|      $              GOTO 666
 | |
|                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
 | |
|             END IF
 | |
| 
 | |
|             IF ( INCR_PREC ) THEN
 | |
|                INCR_PREC = .FALSE.
 | |
|                Y_PREC_STATE = Y_PREC_STATE + 1
 | |
|                DO I = 1, N
 | |
|                   Y_TAIL( I ) = 0.0D+0
 | |
|                END DO
 | |
|             END IF
 | |
| 
 | |
|             PREVNORMDX = NORMDX
 | |
|             PREV_DZ_Z = DZ_Z
 | |
| *
 | |
| *           Update solution.
 | |
| *
 | |
|             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
 | |
|                CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
 | |
|             ELSE
 | |
|                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
 | |
|             END IF
 | |
| 
 | |
|          END DO
 | |
| *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
 | |
|  666     CONTINUE
 | |
| *
 | |
| *     Set final_* when cnt hits ithresh.
 | |
| *
 | |
|          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
 | |
|          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
 | |
| *
 | |
| *     Compute error bounds
 | |
| *
 | |
|          IF (N_NORMS .GE. 1) THEN
 | |
|             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
 | |
|          END IF
 | |
|          IF ( N_NORMS .GE. 2 ) THEN
 | |
|             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
 | |
|          END IF
 | |
| *
 | |
| *     Compute componentwise relative backward error from formula
 | |
| *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
 | |
| *     where abs(Z) is the componentwise absolute value of the matrix
 | |
| *     or vector Z.
 | |
| *
 | |
| *         Compute residual RES = B_s - op(A_s) * Y,
 | |
| *             op(A) = A, A**T, or A**H depending on TRANS (and type).
 | |
| *
 | |
|          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
 | |
|          CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0,
 | |
|      $     RES, 1 )
 | |
| 
 | |
|          DO I = 1, N
 | |
|             AYB( I ) = ABS( B( I, J ) )
 | |
|          END DO
 | |
| *
 | |
| *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
 | |
| *
 | |
|          CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
 | |
|      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
 | |
| 
 | |
|          CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
 | |
| *
 | |
| *     End of loop for each RHS.
 | |
| *
 | |
|       END DO
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLA_GERFSX_EXTENDED
 | |
| *
 | |
|       END
 |