1266 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1266 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLATMT
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLATMT( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
 | 
						|
*                          RANK, KL, KU, PACK, A, LDA, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL               COND, DMAX
 | 
						|
*       INTEGER            INFO, KL, KU, LDA, M, MODE, N, RANK
 | 
						|
*       CHARACTER          DIST, PACK, SYM
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), WORK( * )
 | 
						|
*       REAL               D( * )
 | 
						|
*       INTEGER            ISEED( 4 )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    CLATMT generates random matrices with specified singular values
 | 
						|
*>    (or hermitian with specified eigenvalues)
 | 
						|
*>    for testing LAPACK programs.
 | 
						|
*>
 | 
						|
*>    CLATMT operates by applying the following sequence of
 | 
						|
*>    operations:
 | 
						|
*>
 | 
						|
*>      Set the diagonal to D, where D may be input or
 | 
						|
*>         computed according to MODE, COND, DMAX, and SYM
 | 
						|
*>         as described below.
 | 
						|
*>
 | 
						|
*>      Generate a matrix with the appropriate band structure, by one
 | 
						|
*>         of two methods:
 | 
						|
*>
 | 
						|
*>      Method A:
 | 
						|
*>          Generate a dense M x N matrix by multiplying D on the left
 | 
						|
*>              and the right by random unitary matrices, then:
 | 
						|
*>
 | 
						|
*>          Reduce the bandwidth according to KL and KU, using
 | 
						|
*>              Householder transformations.
 | 
						|
*>
 | 
						|
*>      Method B:
 | 
						|
*>          Convert the bandwidth-0 (i.e., diagonal) matrix to a
 | 
						|
*>              bandwidth-1 matrix using Givens rotations, "chasing"
 | 
						|
*>              out-of-band elements back, much as in QR; then convert
 | 
						|
*>              the bandwidth-1 to a bandwidth-2 matrix, etc.  Note
 | 
						|
*>              that for reasonably small bandwidths (relative to M and
 | 
						|
*>              N) this requires less storage, as a dense matrix is not
 | 
						|
*>              generated.  Also, for hermitian or symmetric matrices,
 | 
						|
*>              only one triangle is generated.
 | 
						|
*>
 | 
						|
*>      Method A is chosen if the bandwidth is a large fraction of the
 | 
						|
*>          order of the matrix, and LDA is at least M (so a dense
 | 
						|
*>          matrix can be stored.)  Method B is chosen if the bandwidth
 | 
						|
*>          is small (< 1/2 N for hermitian or symmetric, < .3 N+M for
 | 
						|
*>          non-symmetric), or LDA is less than M and not less than the
 | 
						|
*>          bandwidth.
 | 
						|
*>
 | 
						|
*>      Pack the matrix if desired. Options specified by PACK are:
 | 
						|
*>         no packing
 | 
						|
*>         zero out upper half (if hermitian)
 | 
						|
*>         zero out lower half (if hermitian)
 | 
						|
*>         store the upper half columnwise (if hermitian or upper
 | 
						|
*>               triangular)
 | 
						|
*>         store the lower half columnwise (if hermitian or lower
 | 
						|
*>               triangular)
 | 
						|
*>         store the lower triangle in banded format (if hermitian or
 | 
						|
*>               lower triangular)
 | 
						|
*>         store the upper triangle in banded format (if hermitian or
 | 
						|
*>               upper triangular)
 | 
						|
*>         store the entire matrix in banded format
 | 
						|
*>      If Method B is chosen, and band format is specified, then the
 | 
						|
*>         matrix will be generated in the band format, so no repacking
 | 
						|
*>         will be necessary.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>           The number of rows of A. Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           The number of columns of A. N must equal M if the matrix
 | 
						|
*>           is symmetric or hermitian (i.e., if SYM is not 'N')
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIST
 | 
						|
*> \verbatim
 | 
						|
*>          DIST is CHARACTER*1
 | 
						|
*>           On entry, DIST specifies the type of distribution to be used
 | 
						|
*>           to generate the random eigen-/singular values.
 | 
						|
*>           'U' => UNIFORM( 0, 1 )  ( 'U' for uniform )
 | 
						|
*>           'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
 | 
						|
*>           'N' => NORMAL( 0, 1 )   ( 'N' for normal )
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension ( 4 )
 | 
						|
*>           On entry ISEED specifies the seed of the random number
 | 
						|
*>           generator. They should lie between 0 and 4095 inclusive,
 | 
						|
*>           and ISEED(4) should be odd. The random number generator
 | 
						|
*>           uses a linear congruential sequence limited to small
 | 
						|
*>           integers, and so should produce machine independent
 | 
						|
*>           random numbers. The values of ISEED are changed on
 | 
						|
*>           exit, and can be used in the next call to CLATMT
 | 
						|
*>           to continue the same random number sequence.
 | 
						|
*>           Changed on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SYM
 | 
						|
*> \verbatim
 | 
						|
*>          SYM is CHARACTER*1
 | 
						|
*>           If SYM='H', the generated matrix is hermitian, with
 | 
						|
*>             eigenvalues specified by D, COND, MODE, and DMAX; they
 | 
						|
*>             may be positive, negative, or zero.
 | 
						|
*>           If SYM='P', the generated matrix is hermitian, with
 | 
						|
*>             eigenvalues (= singular values) specified by D, COND,
 | 
						|
*>             MODE, and DMAX; they will not be negative.
 | 
						|
*>           If SYM='N', the generated matrix is nonsymmetric, with
 | 
						|
*>             singular values specified by D, COND, MODE, and DMAX;
 | 
						|
*>             they will not be negative.
 | 
						|
*>           If SYM='S', the generated matrix is (complex) symmetric,
 | 
						|
*>             with singular values specified by D, COND, MODE, and
 | 
						|
*>             DMAX; they will not be negative.
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension ( MIN( M, N ) )
 | 
						|
*>           This array is used to specify the singular values or
 | 
						|
*>           eigenvalues of A (see SYM, above.)  If MODE=0, then D is
 | 
						|
*>           assumed to contain the singular/eigenvalues, otherwise
 | 
						|
*>           they will be computed according to MODE, COND, and DMAX,
 | 
						|
*>           and placed in D.
 | 
						|
*>           Modified if MODE is nonzero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MODE
 | 
						|
*> \verbatim
 | 
						|
*>          MODE is INTEGER
 | 
						|
*>           On entry this describes how the singular/eigenvalues are to
 | 
						|
*>           be specified:
 | 
						|
*>           MODE = 0 means use D as input
 | 
						|
*>           MODE = 1 sets D(1)=1 and D(2:RANK)=1.0/COND
 | 
						|
*>           MODE = 2 sets D(1:RANK-1)=1 and D(RANK)=1.0/COND
 | 
						|
*>           MODE = 3 sets D(I)=COND**(-(I-1)/(RANK-1))
 | 
						|
*>           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
 | 
						|
*>           MODE = 5 sets D to random numbers in the range
 | 
						|
*>                    ( 1/COND , 1 ) such that their logarithms
 | 
						|
*>                    are uniformly distributed.
 | 
						|
*>           MODE = 6 set D to random numbers from same distribution
 | 
						|
*>                    as the rest of the matrix.
 | 
						|
*>           MODE < 0 has the same meaning as ABS(MODE), except that
 | 
						|
*>              the order of the elements of D is reversed.
 | 
						|
*>           Thus if MODE is positive, D has entries ranging from
 | 
						|
*>              1 to 1/COND, if negative, from 1/COND to 1,
 | 
						|
*>           If SYM='H', and MODE is neither 0, 6, nor -6, then
 | 
						|
*>              the elements of D will also be multiplied by a random
 | 
						|
*>              sign (i.e., +1 or -1.)
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] COND
 | 
						|
*> \verbatim
 | 
						|
*>          COND is REAL
 | 
						|
*>           On entry, this is used as described under MODE above.
 | 
						|
*>           If used, it must be >= 1. Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DMAX
 | 
						|
*> \verbatim
 | 
						|
*>          DMAX is REAL
 | 
						|
*>           If MODE is neither -6, 0 nor 6, the contents of D, as
 | 
						|
*>           computed according to MODE and COND, will be scaled by
 | 
						|
*>           DMAX / max(abs(D(i))); thus, the maximum absolute eigen- or
 | 
						|
*>           singular value (which is to say the norm) will be abs(DMAX).
 | 
						|
*>           Note that DMAX need not be positive: if DMAX is negative
 | 
						|
*>           (or zero), D will be scaled by a negative number (or zero).
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>           The rank of matrix to be generated for modes 1,2,3 only.
 | 
						|
*>           D( RANK+1:N ) = 0.
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>           This specifies the lower bandwidth of the  matrix. For
 | 
						|
*>           example, KL=0 implies upper triangular, KL=1 implies upper
 | 
						|
*>           Hessenberg, and KL being at least M-1 means that the matrix
 | 
						|
*>           has full lower bandwidth.  KL must equal KU if the matrix
 | 
						|
*>           is symmetric or hermitian.
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>           This specifies the upper bandwidth of the  matrix. For
 | 
						|
*>           example, KU=0 implies lower triangular, KU=1 implies lower
 | 
						|
*>           Hessenberg, and KU being at least N-1 means that the matrix
 | 
						|
*>           has full upper bandwidth.  KL must equal KU if the matrix
 | 
						|
*>           is symmetric or hermitian.
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PACK
 | 
						|
*> \verbatim
 | 
						|
*>          PACK is CHARACTER*1
 | 
						|
*>           This specifies packing of matrix as follows:
 | 
						|
*>           'N' => no packing
 | 
						|
*>           'U' => zero out all subdiagonal entries (if symmetric
 | 
						|
*>                  or hermitian)
 | 
						|
*>           'L' => zero out all superdiagonal entries (if symmetric
 | 
						|
*>                  or hermitian)
 | 
						|
*>           'C' => store the upper triangle columnwise (only if the
 | 
						|
*>                  matrix is symmetric, hermitian, or upper triangular)
 | 
						|
*>           'R' => store the lower triangle columnwise (only if the
 | 
						|
*>                  matrix is symmetric, hermitian, or lower triangular)
 | 
						|
*>           'B' => store the lower triangle in band storage scheme
 | 
						|
*>                  (only if the matrix is symmetric, hermitian, or
 | 
						|
*>                  lower triangular)
 | 
						|
*>           'Q' => store the upper triangle in band storage scheme
 | 
						|
*>                  (only if the matrix is symmetric, hermitian, or
 | 
						|
*>                  upper triangular)
 | 
						|
*>           'Z' => store the entire matrix in band storage scheme
 | 
						|
*>                      (pivoting can be provided for by using this
 | 
						|
*>                      option to store A in the trailing rows of
 | 
						|
*>                      the allocated storage)
 | 
						|
*>
 | 
						|
*>           Using these options, the various LAPACK packed and banded
 | 
						|
*>           storage schemes can be obtained:
 | 
						|
*>           GB                    - use 'Z'
 | 
						|
*>           PB, SB, HB, or TB     - use 'B' or 'Q'
 | 
						|
*>           PP, SP, HB, or TP     - use 'C' or 'R'
 | 
						|
*>
 | 
						|
*>           If two calls to CLATMT differ only in the PACK parameter,
 | 
						|
*>           they will generate mathematically equivalent matrices.
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension ( LDA, N )
 | 
						|
*>           On exit A is the desired test matrix.  A is first generated
 | 
						|
*>           in full (unpacked) form, and then packed, if so specified
 | 
						|
*>           by PACK.  Thus, the first M elements of the first N
 | 
						|
*>           columns will always be modified.  If PACK specifies a
 | 
						|
*>           packed or banded storage scheme, all LDA elements of the
 | 
						|
*>           first N columns will be modified; the elements of the
 | 
						|
*>           array which do not correspond to elements of the generated
 | 
						|
*>           matrix are set to zero.
 | 
						|
*>           Modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           LDA specifies the first dimension of A as declared in the
 | 
						|
*>           calling program.  If PACK='N', 'U', 'L', 'C', or 'R', then
 | 
						|
*>           LDA must be at least M.  If PACK='B' or 'Q', then LDA must
 | 
						|
*>           be at least MIN( KL, M-1) (which is equal to MIN(KU,N-1)).
 | 
						|
*>           If PACK='Z', LDA must be large enough to hold the packed
 | 
						|
*>           array: MIN( KU, N-1) + MIN( KL, M-1) + 1.
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension ( 3*MAX( N, M ) )
 | 
						|
*>           Workspace.
 | 
						|
*>           Modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>           Error code.  On exit, INFO will be set to one of the
 | 
						|
*>           following values:
 | 
						|
*>             0 => normal return
 | 
						|
*>            -1 => M negative or unequal to N and SYM='S', 'H', or 'P'
 | 
						|
*>            -2 => N negative
 | 
						|
*>            -3 => DIST illegal string
 | 
						|
*>            -5 => SYM illegal string
 | 
						|
*>            -7 => MODE not in range -6 to 6
 | 
						|
*>            -8 => COND less than 1.0, and MODE neither -6, 0 nor 6
 | 
						|
*>           -10 => KL negative
 | 
						|
*>           -11 => KU negative, or SYM is not 'N' and KU is not equal to
 | 
						|
*>                  KL
 | 
						|
*>           -12 => PACK illegal string, or PACK='U' or 'L', and SYM='N';
 | 
						|
*>                  or PACK='C' or 'Q' and SYM='N' and KL is not zero;
 | 
						|
*>                  or PACK='R' or 'B' and SYM='N' and KU is not zero;
 | 
						|
*>                  or PACK='U', 'L', 'C', 'R', 'B', or 'Q', and M is not
 | 
						|
*>                  N.
 | 
						|
*>           -14 => LDA is less than M, or PACK='Z' and LDA is less than
 | 
						|
*>                  MIN(KU,N-1) + MIN(KL,M-1) + 1.
 | 
						|
*>            1  => Error return from SLATM7
 | 
						|
*>            2  => Cannot scale to DMAX (max. sing. value is 0)
 | 
						|
*>            3  => Error return from CLAGGE, CLAGHE or CLAGSY
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex_matgen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLATMT( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
 | 
						|
     $                   RANK, KL, KU, PACK, A, LDA, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL               COND, DMAX
 | 
						|
      INTEGER            INFO, KL, KU, LDA, M, MODE, N, RANK
 | 
						|
      CHARACTER          DIST, PACK, SYM
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), WORK( * )
 | 
						|
      REAL               D( * )
 | 
						|
      INTEGER            ISEED( 4 )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0 )
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
      COMPLEX            CZERO
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
      REAL               TWOPI
 | 
						|
      PARAMETER          ( TWOPI = 6.2831853071795864769252867663E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX            C, CT, CTEMP, DUMMY, EXTRA, S, ST
 | 
						|
      REAL               ALPHA, ANGLE, REALC, TEMP
 | 
						|
      INTEGER            I, IC, ICOL, IDIST, IENDCH, IINFO, IL, ILDA,
 | 
						|
     $                   IOFFG, IOFFST, IPACK, IPACKG, IR, IR1, IR2,
 | 
						|
     $                   IROW, IRSIGN, ISKEW, ISYM, ISYMPK, J, JC, JCH,
 | 
						|
     $                   JKL, JKU, JR, K, LLB, MINLDA, MNMIN, MR, NC,
 | 
						|
     $                   UUB
 | 
						|
      LOGICAL            CSYM, GIVENS, ILEXTR, ILTEMP, TOPDWN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      COMPLEX            CLARND
 | 
						|
      REAL               SLARND
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           CLARND, SLARND, LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLAGGE, CLAGHE, CLAGSY, CLAROT, CLARTG, CLASET,
 | 
						|
     $                   SLATM7, SSCAL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, CMPLX, CONJG, COS, MAX, MIN, MOD, REAL,
 | 
						|
     $                   SIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     1)      Decode and Test the input parameters.
 | 
						|
*             Initialize flags & seed.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Decode DIST
 | 
						|
*
 | 
						|
      IF( LSAME( DIST, 'U' ) ) THEN
 | 
						|
         IDIST = 1
 | 
						|
      ELSE IF( LSAME( DIST, 'S' ) ) THEN
 | 
						|
         IDIST = 2
 | 
						|
      ELSE IF( LSAME( DIST, 'N' ) ) THEN
 | 
						|
         IDIST = 3
 | 
						|
      ELSE
 | 
						|
         IDIST = -1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Decode SYM
 | 
						|
*
 | 
						|
      IF( LSAME( SYM, 'N' ) ) THEN
 | 
						|
         ISYM = 1
 | 
						|
         IRSIGN = 0
 | 
						|
         CSYM = .FALSE.
 | 
						|
      ELSE IF( LSAME( SYM, 'P' ) ) THEN
 | 
						|
         ISYM = 2
 | 
						|
         IRSIGN = 0
 | 
						|
         CSYM = .FALSE.
 | 
						|
      ELSE IF( LSAME( SYM, 'S' ) ) THEN
 | 
						|
         ISYM = 2
 | 
						|
         IRSIGN = 0
 | 
						|
         CSYM = .TRUE.
 | 
						|
      ELSE IF( LSAME( SYM, 'H' ) ) THEN
 | 
						|
         ISYM = 2
 | 
						|
         IRSIGN = 1
 | 
						|
         CSYM = .FALSE.
 | 
						|
      ELSE
 | 
						|
         ISYM = -1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Decode PACK
 | 
						|
*
 | 
						|
      ISYMPK = 0
 | 
						|
      IF( LSAME( PACK, 'N' ) ) THEN
 | 
						|
         IPACK = 0
 | 
						|
      ELSE IF( LSAME( PACK, 'U' ) ) THEN
 | 
						|
         IPACK = 1
 | 
						|
         ISYMPK = 1
 | 
						|
      ELSE IF( LSAME( PACK, 'L' ) ) THEN
 | 
						|
         IPACK = 2
 | 
						|
         ISYMPK = 1
 | 
						|
      ELSE IF( LSAME( PACK, 'C' ) ) THEN
 | 
						|
         IPACK = 3
 | 
						|
         ISYMPK = 2
 | 
						|
      ELSE IF( LSAME( PACK, 'R' ) ) THEN
 | 
						|
         IPACK = 4
 | 
						|
         ISYMPK = 3
 | 
						|
      ELSE IF( LSAME( PACK, 'B' ) ) THEN
 | 
						|
         IPACK = 5
 | 
						|
         ISYMPK = 3
 | 
						|
      ELSE IF( LSAME( PACK, 'Q' ) ) THEN
 | 
						|
         IPACK = 6
 | 
						|
         ISYMPK = 2
 | 
						|
      ELSE IF( LSAME( PACK, 'Z' ) ) THEN
 | 
						|
         IPACK = 7
 | 
						|
      ELSE
 | 
						|
         IPACK = -1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Set certain internal parameters
 | 
						|
*
 | 
						|
      MNMIN = MIN( M, N )
 | 
						|
      LLB = MIN( KL, M-1 )
 | 
						|
      UUB = MIN( KU, N-1 )
 | 
						|
      MR = MIN( M, N+LLB )
 | 
						|
      NC = MIN( N, M+UUB )
 | 
						|
*
 | 
						|
      IF( IPACK.EQ.5 .OR. IPACK.EQ.6 ) THEN
 | 
						|
         MINLDA = UUB + 1
 | 
						|
      ELSE IF( IPACK.EQ.7 ) THEN
 | 
						|
         MINLDA = LLB + UUB + 1
 | 
						|
      ELSE
 | 
						|
         MINLDA = M
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Use Givens rotation method if bandwidth small enough,
 | 
						|
*     or if LDA is too small to store the matrix unpacked.
 | 
						|
*
 | 
						|
      GIVENS = .FALSE.
 | 
						|
      IF( ISYM.EQ.1 ) THEN
 | 
						|
         IF( REAL( LLB+UUB ).LT.0.3*REAL( MAX( 1, MR+NC ) ) )
 | 
						|
     $      GIVENS = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IF( 2*LLB.LT.M )
 | 
						|
     $      GIVENS = .TRUE.
 | 
						|
      END IF
 | 
						|
      IF( LDA.LT.M .AND. LDA.GE.MINLDA )
 | 
						|
     $   GIVENS = .TRUE.
 | 
						|
*
 | 
						|
*     Set INFO if an error
 | 
						|
*
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( M.NE.N .AND. ISYM.NE.1 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( IDIST.EQ.-1 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( ISYM.EQ.-1 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( ABS( MODE ).GT.6 ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE )
 | 
						|
     $         THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( KL.LT.0 ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( KU.LT.0 .OR. ( ISYM.NE.1 .AND. KL.NE.KU ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( IPACK.EQ.-1 .OR. ( ISYMPK.EQ.1 .AND. ISYM.EQ.1 ) .OR.
 | 
						|
     $         ( ISYMPK.EQ.2 .AND. ISYM.EQ.1 .AND. KL.GT.0 ) .OR.
 | 
						|
     $         ( ISYMPK.EQ.3 .AND. ISYM.EQ.1 .AND. KU.GT.0 ) .OR.
 | 
						|
     $         ( ISYMPK.NE.0 .AND. M.NE.N ) ) THEN
 | 
						|
         INFO = -12
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, MINLDA ) ) THEN
 | 
						|
         INFO = -14
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CLATMT', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize random number generator
 | 
						|
*
 | 
						|
      DO 100 I = 1, 4
 | 
						|
         ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
      IF( MOD( ISEED( 4 ), 2 ).NE.1 )
 | 
						|
     $   ISEED( 4 ) = ISEED( 4 ) + 1
 | 
						|
*
 | 
						|
*     2)      Set up D  if indicated.
 | 
						|
*
 | 
						|
*             Compute D according to COND and MODE
 | 
						|
*
 | 
						|
      CALL SLATM7( MODE, COND, IRSIGN, IDIST, ISEED, D, MNMIN, RANK,
 | 
						|
     $             IINFO )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Choose Top-Down if D is (apparently) increasing,
 | 
						|
*     Bottom-Up if D is (apparently) decreasing.
 | 
						|
*
 | 
						|
      IF( ABS( D( 1 ) ).LE.ABS( D( RANK ) ) ) THEN
 | 
						|
         TOPDWN = .TRUE.
 | 
						|
      ELSE
 | 
						|
         TOPDWN = .FALSE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN
 | 
						|
*
 | 
						|
*        Scale by DMAX
 | 
						|
*
 | 
						|
         TEMP = ABS( D( 1 ) )
 | 
						|
         DO 110 I = 2, RANK
 | 
						|
            TEMP = MAX( TEMP, ABS( D( I ) ) )
 | 
						|
  110    CONTINUE
 | 
						|
*
 | 
						|
         IF( TEMP.GT.ZERO ) THEN
 | 
						|
            ALPHA = DMAX / TEMP
 | 
						|
         ELSE
 | 
						|
            INFO = 2
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         CALL SSCAL( RANK, ALPHA, D, 1 )
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
 | 
						|
*
 | 
						|
*     3)      Generate Banded Matrix using Givens rotations.
 | 
						|
*             Also the special case of UUB=LLB=0
 | 
						|
*
 | 
						|
*               Compute Addressing constants to cover all
 | 
						|
*               storage formats.  Whether GE, HE, SY, GB, HB, or SB,
 | 
						|
*               upper or lower triangle or both,
 | 
						|
*               the (i,j)-th element is in
 | 
						|
*               A( i - ISKEW*j + IOFFST, j )
 | 
						|
*
 | 
						|
      IF( IPACK.GT.4 ) THEN
 | 
						|
         ILDA = LDA - 1
 | 
						|
         ISKEW = 1
 | 
						|
         IF( IPACK.GT.5 ) THEN
 | 
						|
            IOFFST = UUB + 1
 | 
						|
         ELSE
 | 
						|
            IOFFST = 1
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         ILDA = LDA
 | 
						|
         ISKEW = 0
 | 
						|
         IOFFST = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     IPACKG is the format that the matrix is generated in. If this is
 | 
						|
*     different from IPACK, then the matrix must be repacked at the
 | 
						|
*     end.  It also signals how to compute the norm, for scaling.
 | 
						|
*
 | 
						|
      IPACKG = 0
 | 
						|
*
 | 
						|
*     Diagonal Matrix -- We are done, unless it
 | 
						|
*     is to be stored HP/SP/PP/TP (PACK='R' or 'C')
 | 
						|
*
 | 
						|
      IF( LLB.EQ.0 .AND. UUB.EQ.0 ) THEN
 | 
						|
         DO 120 J = 1, MNMIN
 | 
						|
            A( ( 1-ISKEW )*J+IOFFST, J ) = CMPLX( D( J ) )
 | 
						|
  120    CONTINUE
 | 
						|
*
 | 
						|
         IF( IPACK.LE.2 .OR. IPACK.GE.5 )
 | 
						|
     $      IPACKG = IPACK
 | 
						|
*
 | 
						|
      ELSE IF( GIVENS ) THEN
 | 
						|
*
 | 
						|
*        Check whether to use Givens rotations,
 | 
						|
*        Householder transformations, or nothing.
 | 
						|
*
 | 
						|
         IF( ISYM.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           Non-symmetric -- A = U D V
 | 
						|
*
 | 
						|
            IF( IPACK.GT.4 ) THEN
 | 
						|
               IPACKG = IPACK
 | 
						|
            ELSE
 | 
						|
               IPACKG = 0
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            DO 130 J = 1, MNMIN
 | 
						|
               A( ( 1-ISKEW )*J+IOFFST, J ) = CMPLX( D( J ) )
 | 
						|
  130       CONTINUE
 | 
						|
*
 | 
						|
            IF( TOPDWN ) THEN
 | 
						|
               JKL = 0
 | 
						|
               DO 160 JKU = 1, UUB
 | 
						|
*
 | 
						|
*                 Transform from bandwidth JKL, JKU-1 to JKL, JKU
 | 
						|
*
 | 
						|
*                 Last row actually rotated is M
 | 
						|
*                 Last column actually rotated is MIN( M+JKU, N )
 | 
						|
*
 | 
						|
                  DO 150 JR = 1, MIN( M+JKU, N ) + JKL - 1
 | 
						|
                     EXTRA = CZERO
 | 
						|
                     ANGLE = TWOPI*SLARND( 1, ISEED )
 | 
						|
                     C = COS( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     ICOL = MAX( 1, JR-JKL )
 | 
						|
                     IF( JR.LT.M ) THEN
 | 
						|
                        IL = MIN( N, JR+JKU ) + 1 - ICOL
 | 
						|
                        CALL CLAROT( .TRUE., JR.GT.JKL, .FALSE., IL, C,
 | 
						|
     $                               S, A( JR-ISKEW*ICOL+IOFFST, ICOL ),
 | 
						|
     $                               ILDA, EXTRA, DUMMY )
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Chase "EXTRA" back up
 | 
						|
*
 | 
						|
                     IR = JR
 | 
						|
                     IC = ICOL
 | 
						|
                     DO 140 JCH = JR - JKL, 1, -JKL - JKU
 | 
						|
                        IF( IR.LT.M ) THEN
 | 
						|
                           CALL CLARTG( A( IR+1-ISKEW*( IC+1 )+IOFFST,
 | 
						|
     $                                  IC+1 ), EXTRA, REALC, S, DUMMY )
 | 
						|
                           DUMMY = CLARND( 5, ISEED )
 | 
						|
                           C = CONJG( REALC*DUMMY )
 | 
						|
                           S = CONJG( -S*DUMMY )
 | 
						|
                        END IF
 | 
						|
                        IROW = MAX( 1, JCH-JKU )
 | 
						|
                        IL = IR + 2 - IROW
 | 
						|
                        CTEMP = CZERO
 | 
						|
                        ILTEMP = JCH.GT.JKU
 | 
						|
                        CALL CLAROT( .FALSE., ILTEMP, .TRUE., IL, C, S,
 | 
						|
     $                               A( IROW-ISKEW*IC+IOFFST, IC ),
 | 
						|
     $                               ILDA, CTEMP, EXTRA )
 | 
						|
                        IF( ILTEMP ) THEN
 | 
						|
                           CALL CLARTG( A( IROW+1-ISKEW*( IC+1 )+IOFFST,
 | 
						|
     $                                  IC+1 ), CTEMP, REALC, S, DUMMY )
 | 
						|
                           DUMMY = CLARND( 5, ISEED )
 | 
						|
                           C = CONJG( REALC*DUMMY )
 | 
						|
                           S = CONJG( -S*DUMMY )
 | 
						|
*
 | 
						|
                           ICOL = MAX( 1, JCH-JKU-JKL )
 | 
						|
                           IL = IC + 2 - ICOL
 | 
						|
                           EXTRA = CZERO
 | 
						|
                           CALL CLAROT( .TRUE., JCH.GT.JKU+JKL, .TRUE.,
 | 
						|
     $                                  IL, C, S, A( IROW-ISKEW*ICOL+
 | 
						|
     $                                  IOFFST, ICOL ), ILDA, EXTRA,
 | 
						|
     $                                  CTEMP )
 | 
						|
                           IC = ICOL
 | 
						|
                           IR = IROW
 | 
						|
                        END IF
 | 
						|
  140                CONTINUE
 | 
						|
  150             CONTINUE
 | 
						|
  160          CONTINUE
 | 
						|
*
 | 
						|
               JKU = UUB
 | 
						|
               DO 190 JKL = 1, LLB
 | 
						|
*
 | 
						|
*                 Transform from bandwidth JKL-1, JKU to JKL, JKU
 | 
						|
*
 | 
						|
                  DO 180 JC = 1, MIN( N+JKL, M ) + JKU - 1
 | 
						|
                     EXTRA = CZERO
 | 
						|
                     ANGLE = TWOPI*SLARND( 1, ISEED )
 | 
						|
                     C = COS( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     IROW = MAX( 1, JC-JKU )
 | 
						|
                     IF( JC.LT.N ) THEN
 | 
						|
                        IL = MIN( M, JC+JKL ) + 1 - IROW
 | 
						|
                        CALL CLAROT( .FALSE., JC.GT.JKU, .FALSE., IL, C,
 | 
						|
     $                               S, A( IROW-ISKEW*JC+IOFFST, JC ),
 | 
						|
     $                               ILDA, EXTRA, DUMMY )
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Chase "EXTRA" back up
 | 
						|
*
 | 
						|
                     IC = JC
 | 
						|
                     IR = IROW
 | 
						|
                     DO 170 JCH = JC - JKU, 1, -JKL - JKU
 | 
						|
                        IF( IC.LT.N ) THEN
 | 
						|
                           CALL CLARTG( A( IR+1-ISKEW*( IC+1 )+IOFFST,
 | 
						|
     $                                  IC+1 ), EXTRA, REALC, S, DUMMY )
 | 
						|
                           DUMMY = CLARND( 5, ISEED )
 | 
						|
                           C = CONJG( REALC*DUMMY )
 | 
						|
                           S = CONJG( -S*DUMMY )
 | 
						|
                        END IF
 | 
						|
                        ICOL = MAX( 1, JCH-JKL )
 | 
						|
                        IL = IC + 2 - ICOL
 | 
						|
                        CTEMP = CZERO
 | 
						|
                        ILTEMP = JCH.GT.JKL
 | 
						|
                        CALL CLAROT( .TRUE., ILTEMP, .TRUE., IL, C, S,
 | 
						|
     $                               A( IR-ISKEW*ICOL+IOFFST, ICOL ),
 | 
						|
     $                               ILDA, CTEMP, EXTRA )
 | 
						|
                        IF( ILTEMP ) THEN
 | 
						|
                           CALL CLARTG( A( IR+1-ISKEW*( ICOL+1 )+IOFFST,
 | 
						|
     $                                  ICOL+1 ), CTEMP, REALC, S,
 | 
						|
     $                                  DUMMY )
 | 
						|
                           DUMMY = CLARND( 5, ISEED )
 | 
						|
                           C = CONJG( REALC*DUMMY )
 | 
						|
                           S = CONJG( -S*DUMMY )
 | 
						|
                           IROW = MAX( 1, JCH-JKL-JKU )
 | 
						|
                           IL = IR + 2 - IROW
 | 
						|
                           EXTRA = CZERO
 | 
						|
                           CALL CLAROT( .FALSE., JCH.GT.JKL+JKU, .TRUE.,
 | 
						|
     $                                  IL, C, S, A( IROW-ISKEW*ICOL+
 | 
						|
     $                                  IOFFST, ICOL ), ILDA, EXTRA,
 | 
						|
     $                                  CTEMP )
 | 
						|
                           IC = ICOL
 | 
						|
                           IR = IROW
 | 
						|
                        END IF
 | 
						|
  170                CONTINUE
 | 
						|
  180             CONTINUE
 | 
						|
  190          CONTINUE
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Bottom-Up -- Start at the bottom right.
 | 
						|
*
 | 
						|
               JKL = 0
 | 
						|
               DO 220 JKU = 1, UUB
 | 
						|
*
 | 
						|
*                 Transform from bandwidth JKL, JKU-1 to JKL, JKU
 | 
						|
*
 | 
						|
*                 First row actually rotated is M
 | 
						|
*                 First column actually rotated is MIN( M+JKU, N )
 | 
						|
*
 | 
						|
                  IENDCH = MIN( M, N+JKL ) - 1
 | 
						|
                  DO 210 JC = MIN( M+JKU, N ) - 1, 1 - JKL, -1
 | 
						|
                     EXTRA = CZERO
 | 
						|
                     ANGLE = TWOPI*SLARND( 1, ISEED )
 | 
						|
                     C = COS( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     IROW = MAX( 1, JC-JKU+1 )
 | 
						|
                     IF( JC.GT.0 ) THEN
 | 
						|
                        IL = MIN( M, JC+JKL+1 ) + 1 - IROW
 | 
						|
                        CALL CLAROT( .FALSE., .FALSE., JC+JKL.LT.M, IL,
 | 
						|
     $                               C, S, A( IROW-ISKEW*JC+IOFFST,
 | 
						|
     $                               JC ), ILDA, DUMMY, EXTRA )
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Chase "EXTRA" back down
 | 
						|
*
 | 
						|
                     IC = JC
 | 
						|
                     DO 200 JCH = JC + JKL, IENDCH, JKL + JKU
 | 
						|
                        ILEXTR = IC.GT.0
 | 
						|
                        IF( ILEXTR ) THEN
 | 
						|
                           CALL CLARTG( A( JCH-ISKEW*IC+IOFFST, IC ),
 | 
						|
     $                                  EXTRA, REALC, S, DUMMY )
 | 
						|
                           DUMMY = CLARND( 5, ISEED )
 | 
						|
                           C = REALC*DUMMY
 | 
						|
                           S = S*DUMMY
 | 
						|
                        END IF
 | 
						|
                        IC = MAX( 1, IC )
 | 
						|
                        ICOL = MIN( N-1, JCH+JKU )
 | 
						|
                        ILTEMP = JCH + JKU.LT.N
 | 
						|
                        CTEMP = CZERO
 | 
						|
                        CALL CLAROT( .TRUE., ILEXTR, ILTEMP, ICOL+2-IC,
 | 
						|
     $                               C, S, A( JCH-ISKEW*IC+IOFFST, IC ),
 | 
						|
     $                               ILDA, EXTRA, CTEMP )
 | 
						|
                        IF( ILTEMP ) THEN
 | 
						|
                           CALL CLARTG( A( JCH-ISKEW*ICOL+IOFFST,
 | 
						|
     $                                  ICOL ), CTEMP, REALC, S, DUMMY )
 | 
						|
                           DUMMY = CLARND( 5, ISEED )
 | 
						|
                           C = REALC*DUMMY
 | 
						|
                           S = S*DUMMY
 | 
						|
                           IL = MIN( IENDCH, JCH+JKL+JKU ) + 2 - JCH
 | 
						|
                           EXTRA = CZERO
 | 
						|
                           CALL CLAROT( .FALSE., .TRUE.,
 | 
						|
     $                                  JCH+JKL+JKU.LE.IENDCH, IL, C, S,
 | 
						|
     $                                  A( JCH-ISKEW*ICOL+IOFFST,
 | 
						|
     $                                  ICOL ), ILDA, CTEMP, EXTRA )
 | 
						|
                           IC = ICOL
 | 
						|
                        END IF
 | 
						|
  200                CONTINUE
 | 
						|
  210             CONTINUE
 | 
						|
  220          CONTINUE
 | 
						|
*
 | 
						|
               JKU = UUB
 | 
						|
               DO 250 JKL = 1, LLB
 | 
						|
*
 | 
						|
*                 Transform from bandwidth JKL-1, JKU to JKL, JKU
 | 
						|
*
 | 
						|
*                 First row actually rotated is MIN( N+JKL, M )
 | 
						|
*                 First column actually rotated is N
 | 
						|
*
 | 
						|
                  IENDCH = MIN( N, M+JKU ) - 1
 | 
						|
                  DO 240 JR = MIN( N+JKL, M ) - 1, 1 - JKU, -1
 | 
						|
                     EXTRA = CZERO
 | 
						|
                     ANGLE = TWOPI*SLARND( 1, ISEED )
 | 
						|
                     C = COS( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     ICOL = MAX( 1, JR-JKL+1 )
 | 
						|
                     IF( JR.GT.0 ) THEN
 | 
						|
                        IL = MIN( N, JR+JKU+1 ) + 1 - ICOL
 | 
						|
                        CALL CLAROT( .TRUE., .FALSE., JR+JKU.LT.N, IL,
 | 
						|
     $                               C, S, A( JR-ISKEW*ICOL+IOFFST,
 | 
						|
     $                               ICOL ), ILDA, DUMMY, EXTRA )
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Chase "EXTRA" back down
 | 
						|
*
 | 
						|
                     IR = JR
 | 
						|
                     DO 230 JCH = JR + JKU, IENDCH, JKL + JKU
 | 
						|
                        ILEXTR = IR.GT.0
 | 
						|
                        IF( ILEXTR ) THEN
 | 
						|
                           CALL CLARTG( A( IR-ISKEW*JCH+IOFFST, JCH ),
 | 
						|
     $                                  EXTRA, REALC, S, DUMMY )
 | 
						|
                           DUMMY = CLARND( 5, ISEED )
 | 
						|
                           C = REALC*DUMMY
 | 
						|
                           S = S*DUMMY
 | 
						|
                        END IF
 | 
						|
                        IR = MAX( 1, IR )
 | 
						|
                        IROW = MIN( M-1, JCH+JKL )
 | 
						|
                        ILTEMP = JCH + JKL.LT.M
 | 
						|
                        CTEMP = CZERO
 | 
						|
                        CALL CLAROT( .FALSE., ILEXTR, ILTEMP, IROW+2-IR,
 | 
						|
     $                               C, S, A( IR-ISKEW*JCH+IOFFST,
 | 
						|
     $                               JCH ), ILDA, EXTRA, CTEMP )
 | 
						|
                        IF( ILTEMP ) THEN
 | 
						|
                           CALL CLARTG( A( IROW-ISKEW*JCH+IOFFST, JCH ),
 | 
						|
     $                                  CTEMP, REALC, S, DUMMY )
 | 
						|
                           DUMMY = CLARND( 5, ISEED )
 | 
						|
                           C = REALC*DUMMY
 | 
						|
                           S = S*DUMMY
 | 
						|
                           IL = MIN( IENDCH, JCH+JKL+JKU ) + 2 - JCH
 | 
						|
                           EXTRA = CZERO
 | 
						|
                           CALL CLAROT( .TRUE., .TRUE.,
 | 
						|
     $                                  JCH+JKL+JKU.LE.IENDCH, IL, C, S,
 | 
						|
     $                                  A( IROW-ISKEW*JCH+IOFFST, JCH ),
 | 
						|
     $                                  ILDA, CTEMP, EXTRA )
 | 
						|
                           IR = IROW
 | 
						|
                        END IF
 | 
						|
  230                CONTINUE
 | 
						|
  240             CONTINUE
 | 
						|
  250          CONTINUE
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Symmetric -- A = U D U'
 | 
						|
*           Hermitian -- A = U D U*
 | 
						|
*
 | 
						|
            IPACKG = IPACK
 | 
						|
            IOFFG = IOFFST
 | 
						|
*
 | 
						|
            IF( TOPDWN ) THEN
 | 
						|
*
 | 
						|
*              Top-Down -- Generate Upper triangle only
 | 
						|
*
 | 
						|
               IF( IPACK.GE.5 ) THEN
 | 
						|
                  IPACKG = 6
 | 
						|
                  IOFFG = UUB + 1
 | 
						|
               ELSE
 | 
						|
                  IPACKG = 1
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               DO 260 J = 1, MNMIN
 | 
						|
                  A( ( 1-ISKEW )*J+IOFFG, J ) = CMPLX( D( J ) )
 | 
						|
  260          CONTINUE
 | 
						|
*
 | 
						|
               DO 290 K = 1, UUB
 | 
						|
                  DO 280 JC = 1, N - 1
 | 
						|
                     IROW = MAX( 1, JC-K )
 | 
						|
                     IL = MIN( JC+1, K+2 )
 | 
						|
                     EXTRA = CZERO
 | 
						|
                     CTEMP = A( JC-ISKEW*( JC+1 )+IOFFG, JC+1 )
 | 
						|
                     ANGLE = TWOPI*SLARND( 1, ISEED )
 | 
						|
                     C = COS( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     IF( CSYM ) THEN
 | 
						|
                        CT = C
 | 
						|
                        ST = S
 | 
						|
                     ELSE
 | 
						|
                        CTEMP = CONJG( CTEMP )
 | 
						|
                        CT = CONJG( C )
 | 
						|
                        ST = CONJG( S )
 | 
						|
                     END IF
 | 
						|
                     CALL CLAROT( .FALSE., JC.GT.K, .TRUE., IL, C, S,
 | 
						|
     $                            A( IROW-ISKEW*JC+IOFFG, JC ), ILDA,
 | 
						|
     $                            EXTRA, CTEMP )
 | 
						|
                     CALL CLAROT( .TRUE., .TRUE., .FALSE.,
 | 
						|
     $                            MIN( K, N-JC )+1, CT, ST,
 | 
						|
     $                            A( ( 1-ISKEW )*JC+IOFFG, JC ), ILDA,
 | 
						|
     $                            CTEMP, DUMMY )
 | 
						|
*
 | 
						|
*                    Chase EXTRA back up the matrix
 | 
						|
*
 | 
						|
                     ICOL = JC
 | 
						|
                     DO 270 JCH = JC - K, 1, -K
 | 
						|
                        CALL CLARTG( A( JCH+1-ISKEW*( ICOL+1 )+IOFFG,
 | 
						|
     $                               ICOL+1 ), EXTRA, REALC, S, DUMMY )
 | 
						|
                        DUMMY = CLARND( 5, ISEED )
 | 
						|
                        C = CONJG( REALC*DUMMY )
 | 
						|
                        S = CONJG( -S*DUMMY )
 | 
						|
                        CTEMP = A( JCH-ISKEW*( JCH+1 )+IOFFG, JCH+1 )
 | 
						|
                        IF( CSYM ) THEN
 | 
						|
                           CT = C
 | 
						|
                           ST = S
 | 
						|
                        ELSE
 | 
						|
                           CTEMP = CONJG( CTEMP )
 | 
						|
                           CT = CONJG( C )
 | 
						|
                           ST = CONJG( S )
 | 
						|
                        END IF
 | 
						|
                        CALL CLAROT( .TRUE., .TRUE., .TRUE., K+2, C, S,
 | 
						|
     $                               A( ( 1-ISKEW )*JCH+IOFFG, JCH ),
 | 
						|
     $                               ILDA, CTEMP, EXTRA )
 | 
						|
                        IROW = MAX( 1, JCH-K )
 | 
						|
                        IL = MIN( JCH+1, K+2 )
 | 
						|
                        EXTRA = CZERO
 | 
						|
                        CALL CLAROT( .FALSE., JCH.GT.K, .TRUE., IL, CT,
 | 
						|
     $                               ST, A( IROW-ISKEW*JCH+IOFFG, JCH ),
 | 
						|
     $                               ILDA, EXTRA, CTEMP )
 | 
						|
                        ICOL = JCH
 | 
						|
  270                CONTINUE
 | 
						|
  280             CONTINUE
 | 
						|
  290          CONTINUE
 | 
						|
*
 | 
						|
*              If we need lower triangle, copy from upper. Note that
 | 
						|
*              the order of copying is chosen to work for 'q' -> 'b'
 | 
						|
*
 | 
						|
               IF( IPACK.NE.IPACKG .AND. IPACK.NE.3 ) THEN
 | 
						|
                  DO 320 JC = 1, N
 | 
						|
                     IROW = IOFFST - ISKEW*JC
 | 
						|
                     IF( CSYM ) THEN
 | 
						|
                        DO 300 JR = JC, MIN( N, JC+UUB )
 | 
						|
                           A( JR+IROW, JC ) = A( JC-ISKEW*JR+IOFFG, JR )
 | 
						|
  300                   CONTINUE
 | 
						|
                     ELSE
 | 
						|
                        DO 310 JR = JC, MIN( N, JC+UUB )
 | 
						|
                           A( JR+IROW, JC ) = CONJG( A( JC-ISKEW*JR+
 | 
						|
     $                                        IOFFG, JR ) )
 | 
						|
  310                   CONTINUE
 | 
						|
                     END IF
 | 
						|
  320             CONTINUE
 | 
						|
                  IF( IPACK.EQ.5 ) THEN
 | 
						|
                     DO 340 JC = N - UUB + 1, N
 | 
						|
                        DO 330 JR = N + 2 - JC, UUB + 1
 | 
						|
                           A( JR, JC ) = CZERO
 | 
						|
  330                   CONTINUE
 | 
						|
  340                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  IF( IPACKG.EQ.6 ) THEN
 | 
						|
                     IPACKG = IPACK
 | 
						|
                  ELSE
 | 
						|
                     IPACKG = 0
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Bottom-Up -- Generate Lower triangle only
 | 
						|
*
 | 
						|
               IF( IPACK.GE.5 ) THEN
 | 
						|
                  IPACKG = 5
 | 
						|
                  IF( IPACK.EQ.6 )
 | 
						|
     $               IOFFG = 1
 | 
						|
               ELSE
 | 
						|
                  IPACKG = 2
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               DO 350 J = 1, MNMIN
 | 
						|
                  A( ( 1-ISKEW )*J+IOFFG, J ) = CMPLX( D( J ) )
 | 
						|
  350          CONTINUE
 | 
						|
*
 | 
						|
               DO 380 K = 1, UUB
 | 
						|
                  DO 370 JC = N - 1, 1, -1
 | 
						|
                     IL = MIN( N+1-JC, K+2 )
 | 
						|
                     EXTRA = CZERO
 | 
						|
                     CTEMP = A( 1+( 1-ISKEW )*JC+IOFFG, JC )
 | 
						|
                     ANGLE = TWOPI*SLARND( 1, ISEED )
 | 
						|
                     C = COS( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
 | 
						|
                     IF( CSYM ) THEN
 | 
						|
                        CT = C
 | 
						|
                        ST = S
 | 
						|
                     ELSE
 | 
						|
                        CTEMP = CONJG( CTEMP )
 | 
						|
                        CT = CONJG( C )
 | 
						|
                        ST = CONJG( S )
 | 
						|
                     END IF
 | 
						|
                     CALL CLAROT( .FALSE., .TRUE., N-JC.GT.K, IL, C, S,
 | 
						|
     $                            A( ( 1-ISKEW )*JC+IOFFG, JC ), ILDA,
 | 
						|
     $                            CTEMP, EXTRA )
 | 
						|
                     ICOL = MAX( 1, JC-K+1 )
 | 
						|
                     CALL CLAROT( .TRUE., .FALSE., .TRUE., JC+2-ICOL,
 | 
						|
     $                            CT, ST, A( JC-ISKEW*ICOL+IOFFG,
 | 
						|
     $                            ICOL ), ILDA, DUMMY, CTEMP )
 | 
						|
*
 | 
						|
*                    Chase EXTRA back down the matrix
 | 
						|
*
 | 
						|
                     ICOL = JC
 | 
						|
                     DO 360 JCH = JC + K, N - 1, K
 | 
						|
                        CALL CLARTG( A( JCH-ISKEW*ICOL+IOFFG, ICOL ),
 | 
						|
     $                               EXTRA, REALC, S, DUMMY )
 | 
						|
                        DUMMY = CLARND( 5, ISEED )
 | 
						|
                        C = REALC*DUMMY
 | 
						|
                        S = S*DUMMY
 | 
						|
                        CTEMP = A( 1+( 1-ISKEW )*JCH+IOFFG, JCH )
 | 
						|
                        IF( CSYM ) THEN
 | 
						|
                           CT = C
 | 
						|
                           ST = S
 | 
						|
                        ELSE
 | 
						|
                           CTEMP = CONJG( CTEMP )
 | 
						|
                           CT = CONJG( C )
 | 
						|
                           ST = CONJG( S )
 | 
						|
                        END IF
 | 
						|
                        CALL CLAROT( .TRUE., .TRUE., .TRUE., K+2, C, S,
 | 
						|
     $                               A( JCH-ISKEW*ICOL+IOFFG, ICOL ),
 | 
						|
     $                               ILDA, EXTRA, CTEMP )
 | 
						|
                        IL = MIN( N+1-JCH, K+2 )
 | 
						|
                        EXTRA = CZERO
 | 
						|
                        CALL CLAROT( .FALSE., .TRUE., N-JCH.GT.K, IL,
 | 
						|
     $                               CT, ST, A( ( 1-ISKEW )*JCH+IOFFG,
 | 
						|
     $                               JCH ), ILDA, CTEMP, EXTRA )
 | 
						|
                        ICOL = JCH
 | 
						|
  360                CONTINUE
 | 
						|
  370             CONTINUE
 | 
						|
  380          CONTINUE
 | 
						|
*
 | 
						|
*              If we need upper triangle, copy from lower. Note that
 | 
						|
*              the order of copying is chosen to work for 'b' -> 'q'
 | 
						|
*
 | 
						|
               IF( IPACK.NE.IPACKG .AND. IPACK.NE.4 ) THEN
 | 
						|
                  DO 410 JC = N, 1, -1
 | 
						|
                     IROW = IOFFST - ISKEW*JC
 | 
						|
                     IF( CSYM ) THEN
 | 
						|
                        DO 390 JR = JC, MAX( 1, JC-UUB ), -1
 | 
						|
                           A( JR+IROW, JC ) = A( JC-ISKEW*JR+IOFFG, JR )
 | 
						|
  390                   CONTINUE
 | 
						|
                     ELSE
 | 
						|
                        DO 400 JR = JC, MAX( 1, JC-UUB ), -1
 | 
						|
                           A( JR+IROW, JC ) = CONJG( A( JC-ISKEW*JR+
 | 
						|
     $                                        IOFFG, JR ) )
 | 
						|
  400                   CONTINUE
 | 
						|
                     END IF
 | 
						|
  410             CONTINUE
 | 
						|
                  IF( IPACK.EQ.6 ) THEN
 | 
						|
                     DO 430 JC = 1, UUB
 | 
						|
                        DO 420 JR = 1, UUB + 1 - JC
 | 
						|
                           A( JR, JC ) = CZERO
 | 
						|
  420                   CONTINUE
 | 
						|
  430                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  IF( IPACKG.EQ.5 ) THEN
 | 
						|
                     IPACKG = IPACK
 | 
						|
                  ELSE
 | 
						|
                     IPACKG = 0
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Ensure that the diagonal is real if Hermitian
 | 
						|
*
 | 
						|
            IF( .NOT.CSYM ) THEN
 | 
						|
               DO 440 JC = 1, N
 | 
						|
                  IROW = IOFFST + ( 1-ISKEW )*JC
 | 
						|
                  A( IROW, JC ) = CMPLX( REAL( A( IROW, JC ) ) )
 | 
						|
  440          CONTINUE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        4)      Generate Banded Matrix by first
 | 
						|
*                Rotating by random Unitary matrices,
 | 
						|
*                then reducing the bandwidth using Householder
 | 
						|
*                transformations.
 | 
						|
*
 | 
						|
*                Note: we should get here only if LDA .ge. N
 | 
						|
*
 | 
						|
         IF( ISYM.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           Non-symmetric -- A = U D V
 | 
						|
*
 | 
						|
            CALL CLAGGE( MR, NC, LLB, UUB, D, A, LDA, ISEED, WORK,
 | 
						|
     $                   IINFO )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Symmetric -- A = U D U' or
 | 
						|
*           Hermitian -- A = U D U*
 | 
						|
*
 | 
						|
            IF( CSYM ) THEN
 | 
						|
               CALL CLAGSY( M, LLB, D, A, LDA, ISEED, WORK, IINFO )
 | 
						|
            ELSE
 | 
						|
               CALL CLAGHE( M, LLB, D, A, LDA, ISEED, WORK, IINFO )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = 3
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     5)      Pack the matrix
 | 
						|
*
 | 
						|
      IF( IPACK.NE.IPACKG ) THEN
 | 
						|
         IF( IPACK.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           'U' -- Upper triangular, not packed
 | 
						|
*
 | 
						|
            DO 460 J = 1, M
 | 
						|
               DO 450 I = J + 1, M
 | 
						|
                  A( I, J ) = CZERO
 | 
						|
  450          CONTINUE
 | 
						|
  460       CONTINUE
 | 
						|
*
 | 
						|
         ELSE IF( IPACK.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*           'L' -- Lower triangular, not packed
 | 
						|
*
 | 
						|
            DO 480 J = 2, M
 | 
						|
               DO 470 I = 1, J - 1
 | 
						|
                  A( I, J ) = CZERO
 | 
						|
  470          CONTINUE
 | 
						|
  480       CONTINUE
 | 
						|
*
 | 
						|
         ELSE IF( IPACK.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*           'C' -- Upper triangle packed Columnwise.
 | 
						|
*
 | 
						|
            ICOL = 1
 | 
						|
            IROW = 0
 | 
						|
            DO 500 J = 1, M
 | 
						|
               DO 490 I = 1, J
 | 
						|
                  IROW = IROW + 1
 | 
						|
                  IF( IROW.GT.LDA ) THEN
 | 
						|
                     IROW = 1
 | 
						|
                     ICOL = ICOL + 1
 | 
						|
                  END IF
 | 
						|
                  A( IROW, ICOL ) = A( I, J )
 | 
						|
  490          CONTINUE
 | 
						|
  500       CONTINUE
 | 
						|
*
 | 
						|
         ELSE IF( IPACK.EQ.4 ) THEN
 | 
						|
*
 | 
						|
*           'R' -- Lower triangle packed Columnwise.
 | 
						|
*
 | 
						|
            ICOL = 1
 | 
						|
            IROW = 0
 | 
						|
            DO 520 J = 1, M
 | 
						|
               DO 510 I = J, M
 | 
						|
                  IROW = IROW + 1
 | 
						|
                  IF( IROW.GT.LDA ) THEN
 | 
						|
                     IROW = 1
 | 
						|
                     ICOL = ICOL + 1
 | 
						|
                  END IF
 | 
						|
                  A( IROW, ICOL ) = A( I, J )
 | 
						|
  510          CONTINUE
 | 
						|
  520       CONTINUE
 | 
						|
*
 | 
						|
         ELSE IF( IPACK.GE.5 ) THEN
 | 
						|
*
 | 
						|
*           'B' -- The lower triangle is packed as a band matrix.
 | 
						|
*           'Q' -- The upper triangle is packed as a band matrix.
 | 
						|
*           'Z' -- The whole matrix is packed as a band matrix.
 | 
						|
*
 | 
						|
            IF( IPACK.EQ.5 )
 | 
						|
     $         UUB = 0
 | 
						|
            IF( IPACK.EQ.6 )
 | 
						|
     $         LLB = 0
 | 
						|
*
 | 
						|
            DO 540 J = 1, UUB
 | 
						|
               DO 530 I = MIN( J+LLB, M ), 1, -1
 | 
						|
                  A( I-J+UUB+1, J ) = A( I, J )
 | 
						|
  530          CONTINUE
 | 
						|
  540       CONTINUE
 | 
						|
*
 | 
						|
            DO 560 J = UUB + 2, N
 | 
						|
               DO 550 I = J - UUB, MIN( J+LLB, M )
 | 
						|
                  A( I-J+UUB+1, J ) = A( I, J )
 | 
						|
  550          CONTINUE
 | 
						|
  560       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        If packed, zero out extraneous elements.
 | 
						|
*
 | 
						|
*        Symmetric/Triangular Packed --
 | 
						|
*        zero out everything after A(IROW,ICOL)
 | 
						|
*
 | 
						|
         IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
 | 
						|
            DO 580 JC = ICOL, M
 | 
						|
               DO 570 JR = IROW + 1, LDA
 | 
						|
                  A( JR, JC ) = CZERO
 | 
						|
  570          CONTINUE
 | 
						|
               IROW = 0
 | 
						|
  580       CONTINUE
 | 
						|
*
 | 
						|
         ELSE IF( IPACK.GE.5 ) THEN
 | 
						|
*
 | 
						|
*           Packed Band --
 | 
						|
*              1st row is now in A( UUB+2-j, j), zero above it
 | 
						|
*              m-th row is now in A( M+UUB-j,j), zero below it
 | 
						|
*              last non-zero diagonal is now in A( UUB+LLB+1,j ),
 | 
						|
*                 zero below it, too.
 | 
						|
*
 | 
						|
            IR1 = UUB + LLB + 2
 | 
						|
            IR2 = UUB + M + 2
 | 
						|
            DO 610 JC = 1, N
 | 
						|
               DO 590 JR = 1, UUB + 1 - JC
 | 
						|
                  A( JR, JC ) = CZERO
 | 
						|
  590          CONTINUE
 | 
						|
               DO 600 JR = MAX( 1, MIN( IR1, IR2-JC ) ), LDA
 | 
						|
                  A( JR, JC ) = CZERO
 | 
						|
  600          CONTINUE
 | 
						|
  610       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLATMT
 | 
						|
*
 | 
						|
      END
 |