505 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			505 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLATM5
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
 | 
						|
*                          E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA,
 | 
						|
*                          QBLCKB )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N,
 | 
						|
*      $                   PRTYPE, QBLCKA, QBLCKB
 | 
						|
*       REAL               ALPHA
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | 
						|
*      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
 | 
						|
*      $                   L( LDL, * ), R( LDR, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLATM5 generates matrices involved in the Generalized Sylvester
 | 
						|
*> equation:
 | 
						|
*>
 | 
						|
*>     A * R - L * B = C
 | 
						|
*>     D * R - L * E = F
 | 
						|
*>
 | 
						|
*> They also satisfy (the diagonalization condition)
 | 
						|
*>
 | 
						|
*>  [ I -L ] ( [ A  -C ], [ D -F ] ) [ I  R ] = ( [ A    ], [ D    ] )
 | 
						|
*>  [    I ] ( [     B ]  [    E ] ) [    I ]   ( [    B ]  [    E ] )
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] PRTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          PRTYPE is INTEGER
 | 
						|
*>          "Points" to a certian type of the matrices to generate
 | 
						|
*>          (see futher details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          Specifies the order of A and D and the number of rows in
 | 
						|
*>          C, F,  R and L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          Specifies the order of B and E and the number of columns in
 | 
						|
*>          C, F, R and L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA, M).
 | 
						|
*>          On exit A M-by-M is initialized according to PRTYPE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB, N).
 | 
						|
*>          On exit B N-by-N is initialized according to PRTYPE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX array, dimension (LDC, N).
 | 
						|
*>          On exit C M-by-N is initialized according to PRTYPE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is COMPLEX array, dimension (LDD, M).
 | 
						|
*>          On exit D M-by-M is initialized according to PRTYPE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDD
 | 
						|
*> \verbatim
 | 
						|
*>          LDD is INTEGER
 | 
						|
*>          The leading dimension of D.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX array, dimension (LDE, N).
 | 
						|
*>          On exit E N-by-N is initialized according to PRTYPE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDE
 | 
						|
*> \verbatim
 | 
						|
*>          LDE is INTEGER
 | 
						|
*>          The leading dimension of E.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] F
 | 
						|
*> \verbatim
 | 
						|
*>          F is COMPLEX array, dimension (LDF, N).
 | 
						|
*>          On exit F M-by-N is initialized according to PRTYPE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDF
 | 
						|
*> \verbatim
 | 
						|
*>          LDF is INTEGER
 | 
						|
*>          The leading dimension of F.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] R
 | 
						|
*> \verbatim
 | 
						|
*>          R is COMPLEX array, dimension (LDR, N).
 | 
						|
*>          On exit R M-by-N is initialized according to PRTYPE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDR
 | 
						|
*> \verbatim
 | 
						|
*>          LDR is INTEGER
 | 
						|
*>          The leading dimension of R.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is COMPLEX array, dimension (LDL, N).
 | 
						|
*>          On exit L M-by-N is initialized according to PRTYPE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDL
 | 
						|
*> \verbatim
 | 
						|
*>          LDL is INTEGER
 | 
						|
*>          The leading dimension of L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is REAL
 | 
						|
*>          Parameter used in generating PRTYPE = 1 and 5 matrices.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] QBLCKA
 | 
						|
*> \verbatim
 | 
						|
*>          QBLCKA is INTEGER
 | 
						|
*>          When PRTYPE = 3, specifies the distance between 2-by-2
 | 
						|
*>          blocks on the diagonal in A. Otherwise, QBLCKA is not
 | 
						|
*>          referenced. QBLCKA > 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] QBLCKB
 | 
						|
*> \verbatim
 | 
						|
*>          QBLCKB is INTEGER
 | 
						|
*>          When PRTYPE = 3, specifies the distance between 2-by-2
 | 
						|
*>          blocks on the diagonal in B. Otherwise, QBLCKB is not
 | 
						|
*>          referenced. QBLCKB > 1.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex_matgen
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices
 | 
						|
*>
 | 
						|
*>             A : if (i == j) then A(i, j) = 1.0
 | 
						|
*>                 if (j == i + 1) then A(i, j) = -1.0
 | 
						|
*>                 else A(i, j) = 0.0,            i, j = 1...M
 | 
						|
*>
 | 
						|
*>             B : if (i == j) then B(i, j) = 1.0 - ALPHA
 | 
						|
*>                 if (j == i + 1) then B(i, j) = 1.0
 | 
						|
*>                 else B(i, j) = 0.0,            i, j = 1...N
 | 
						|
*>
 | 
						|
*>             D : if (i == j) then D(i, j) = 1.0
 | 
						|
*>                 else D(i, j) = 0.0,            i, j = 1...M
 | 
						|
*>
 | 
						|
*>             E : if (i == j) then E(i, j) = 1.0
 | 
						|
*>                 else E(i, j) = 0.0,            i, j = 1...N
 | 
						|
*>
 | 
						|
*>             L =  R are chosen from [-10...10],
 | 
						|
*>                  which specifies the right hand sides (C, F).
 | 
						|
*>
 | 
						|
*>  PRTYPE = 2 or 3: Triangular and/or quasi- triangular.
 | 
						|
*>
 | 
						|
*>             A : if (i <= j) then A(i, j) = [-1...1]
 | 
						|
*>                 else A(i, j) = 0.0,             i, j = 1...M
 | 
						|
*>
 | 
						|
*>                 if (PRTYPE = 3) then
 | 
						|
*>                    A(k + 1, k + 1) = A(k, k)
 | 
						|
*>                    A(k + 1, k) = [-1...1]
 | 
						|
*>                    sign(A(k, k + 1) = -(sin(A(k + 1, k))
 | 
						|
*>                        k = 1, M - 1, QBLCKA
 | 
						|
*>
 | 
						|
*>             B : if (i <= j) then B(i, j) = [-1...1]
 | 
						|
*>                 else B(i, j) = 0.0,            i, j = 1...N
 | 
						|
*>
 | 
						|
*>                 if (PRTYPE = 3) then
 | 
						|
*>                    B(k + 1, k + 1) = B(k, k)
 | 
						|
*>                    B(k + 1, k) = [-1...1]
 | 
						|
*>                    sign(B(k, k + 1) = -(sign(B(k + 1, k))
 | 
						|
*>                        k = 1, N - 1, QBLCKB
 | 
						|
*>
 | 
						|
*>             D : if (i <= j) then D(i, j) = [-1...1].
 | 
						|
*>                 else D(i, j) = 0.0,            i, j = 1...M
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>             E : if (i <= j) then D(i, j) = [-1...1]
 | 
						|
*>                 else E(i, j) = 0.0,            i, j = 1...N
 | 
						|
*>
 | 
						|
*>                 L, R are chosen from [-10...10],
 | 
						|
*>                 which specifies the right hand sides (C, F).
 | 
						|
*>
 | 
						|
*>  PRTYPE = 4 Full
 | 
						|
*>             A(i, j) = [-10...10]
 | 
						|
*>             D(i, j) = [-1...1]    i,j = 1...M
 | 
						|
*>             B(i, j) = [-10...10]
 | 
						|
*>             E(i, j) = [-1...1]    i,j = 1...N
 | 
						|
*>             R(i, j) = [-10...10]
 | 
						|
*>             L(i, j) = [-1...1]    i = 1..M ,j = 1...N
 | 
						|
*>
 | 
						|
*>             L, R specifies the right hand sides (C, F).
 | 
						|
*>
 | 
						|
*>  PRTYPE = 5 special case common and/or close eigs.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
 | 
						|
     $                   E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA,
 | 
						|
     $                   QBLCKB )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N,
 | 
						|
     $                   PRTYPE, QBLCKA, QBLCKB
 | 
						|
      REAL               ALPHA
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | 
						|
     $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
 | 
						|
     $                   L( LDL, * ), R( LDR, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ONE, TWO, ZERO, HALF, TWENTY
 | 
						|
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
 | 
						|
     $                   TWO = ( 2.0E+0, 0.0E+0 ),
 | 
						|
     $                   ZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   HALF = ( 0.5E+0, 0.0E+0 ),
 | 
						|
     $                   TWENTY = ( 2.0E+1, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, K
 | 
						|
      COMPLEX            IMEPS, REEPS
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CMPLX, MOD, SIN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( PRTYPE.EQ.1 ) THEN
 | 
						|
         DO 20 I = 1, M
 | 
						|
            DO 10 J = 1, M
 | 
						|
               IF( I.EQ.J ) THEN
 | 
						|
                  A( I, J ) = ONE
 | 
						|
                  D( I, J ) = ONE
 | 
						|
               ELSE IF( I.EQ.J-1 ) THEN
 | 
						|
                  A( I, J ) = -ONE
 | 
						|
                  D( I, J ) = ZERO
 | 
						|
               ELSE
 | 
						|
                  A( I, J ) = ZERO
 | 
						|
                  D( I, J ) = ZERO
 | 
						|
               END IF
 | 
						|
   10       CONTINUE
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
         DO 40 I = 1, N
 | 
						|
            DO 30 J = 1, N
 | 
						|
               IF( I.EQ.J ) THEN
 | 
						|
                  B( I, J ) = ONE - ALPHA
 | 
						|
                  E( I, J ) = ONE
 | 
						|
               ELSE IF( I.EQ.J-1 ) THEN
 | 
						|
                  B( I, J ) = ONE
 | 
						|
                  E( I, J ) = ZERO
 | 
						|
               ELSE
 | 
						|
                  B( I, J ) = ZERO
 | 
						|
                  E( I, J ) = ZERO
 | 
						|
               END IF
 | 
						|
   30       CONTINUE
 | 
						|
   40    CONTINUE
 | 
						|
*
 | 
						|
         DO 60 I = 1, M
 | 
						|
            DO 50 J = 1, N
 | 
						|
               R( I, J ) = ( HALF-SIN( CMPLX( I / J ) ) )*TWENTY
 | 
						|
               L( I, J ) = R( I, J )
 | 
						|
   50       CONTINUE
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
      ELSE IF( PRTYPE.EQ.2 .OR. PRTYPE.EQ.3 ) THEN
 | 
						|
         DO 80 I = 1, M
 | 
						|
            DO 70 J = 1, M
 | 
						|
               IF( I.LE.J ) THEN
 | 
						|
                  A( I, J ) = ( HALF-SIN( CMPLX( I ) ) )*TWO
 | 
						|
                  D( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWO
 | 
						|
               ELSE
 | 
						|
                  A( I, J ) = ZERO
 | 
						|
                  D( I, J ) = ZERO
 | 
						|
               END IF
 | 
						|
   70       CONTINUE
 | 
						|
   80    CONTINUE
 | 
						|
*
 | 
						|
         DO 100 I = 1, N
 | 
						|
            DO 90 J = 1, N
 | 
						|
               IF( I.LE.J ) THEN
 | 
						|
                  B( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*TWO
 | 
						|
                  E( I, J ) = ( HALF-SIN( CMPLX( J ) ) )*TWO
 | 
						|
               ELSE
 | 
						|
                  B( I, J ) = ZERO
 | 
						|
                  E( I, J ) = ZERO
 | 
						|
               END IF
 | 
						|
   90       CONTINUE
 | 
						|
  100    CONTINUE
 | 
						|
*
 | 
						|
         DO 120 I = 1, M
 | 
						|
            DO 110 J = 1, N
 | 
						|
               R( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWENTY
 | 
						|
               L( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*TWENTY
 | 
						|
  110       CONTINUE
 | 
						|
  120    CONTINUE
 | 
						|
*
 | 
						|
         IF( PRTYPE.EQ.3 ) THEN
 | 
						|
            IF( QBLCKA.LE.1 )
 | 
						|
     $         QBLCKA = 2
 | 
						|
            DO 130 K = 1, M - 1, QBLCKA
 | 
						|
               A( K+1, K+1 ) = A( K, K )
 | 
						|
               A( K+1, K ) = -SIN( A( K, K+1 ) )
 | 
						|
  130       CONTINUE
 | 
						|
*
 | 
						|
            IF( QBLCKB.LE.1 )
 | 
						|
     $         QBLCKB = 2
 | 
						|
            DO 140 K = 1, N - 1, QBLCKB
 | 
						|
               B( K+1, K+1 ) = B( K, K )
 | 
						|
               B( K+1, K ) = -SIN( B( K, K+1 ) )
 | 
						|
  140       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE IF( PRTYPE.EQ.4 ) THEN
 | 
						|
         DO 160 I = 1, M
 | 
						|
            DO 150 J = 1, M
 | 
						|
               A( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWENTY
 | 
						|
               D( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*TWO
 | 
						|
  150       CONTINUE
 | 
						|
  160    CONTINUE
 | 
						|
*
 | 
						|
         DO 180 I = 1, N
 | 
						|
            DO 170 J = 1, N
 | 
						|
               B( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*TWENTY
 | 
						|
               E( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWO
 | 
						|
  170       CONTINUE
 | 
						|
  180    CONTINUE
 | 
						|
*
 | 
						|
         DO 200 I = 1, M
 | 
						|
            DO 190 J = 1, N
 | 
						|
               R( I, J ) = ( HALF-SIN( CMPLX( J / I ) ) )*TWENTY
 | 
						|
               L( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWO
 | 
						|
  190       CONTINUE
 | 
						|
  200    CONTINUE
 | 
						|
*
 | 
						|
      ELSE IF( PRTYPE.GE.5 ) THEN
 | 
						|
         REEPS = HALF*TWO*TWENTY / ALPHA
 | 
						|
         IMEPS = ( HALF-TWO ) / ALPHA
 | 
						|
         DO 220 I = 1, M
 | 
						|
            DO 210 J = 1, N
 | 
						|
               R( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*ALPHA / TWENTY
 | 
						|
               L( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*ALPHA / TWENTY
 | 
						|
  210       CONTINUE
 | 
						|
  220    CONTINUE
 | 
						|
*
 | 
						|
         DO 230 I = 1, M
 | 
						|
            D( I, I ) = ONE
 | 
						|
  230    CONTINUE
 | 
						|
*
 | 
						|
         DO 240 I = 1, M
 | 
						|
            IF( I.LE.4 ) THEN
 | 
						|
               A( I, I ) = ONE
 | 
						|
               IF( I.GT.2 )
 | 
						|
     $            A( I, I ) = ONE + REEPS
 | 
						|
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
 | 
						|
                  A( I, I+1 ) = IMEPS
 | 
						|
               ELSE IF( I.GT.1 ) THEN
 | 
						|
                  A( I, I-1 ) = -IMEPS
 | 
						|
               END IF
 | 
						|
            ELSE IF( I.LE.8 ) THEN
 | 
						|
               IF( I.LE.6 ) THEN
 | 
						|
                  A( I, I ) = REEPS
 | 
						|
               ELSE
 | 
						|
                  A( I, I ) = -REEPS
 | 
						|
               END IF
 | 
						|
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
 | 
						|
                  A( I, I+1 ) = ONE
 | 
						|
               ELSE IF( I.GT.1 ) THEN
 | 
						|
                  A( I, I-1 ) = -ONE
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               A( I, I ) = ONE
 | 
						|
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
 | 
						|
                  A( I, I+1 ) = IMEPS*2
 | 
						|
               ELSE IF( I.GT.1 ) THEN
 | 
						|
                  A( I, I-1 ) = -IMEPS*2
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
  240    CONTINUE
 | 
						|
*
 | 
						|
         DO 250 I = 1, N
 | 
						|
            E( I, I ) = ONE
 | 
						|
            IF( I.LE.4 ) THEN
 | 
						|
               B( I, I ) = -ONE
 | 
						|
               IF( I.GT.2 )
 | 
						|
     $            B( I, I ) = ONE - REEPS
 | 
						|
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
 | 
						|
                  B( I, I+1 ) = IMEPS
 | 
						|
               ELSE IF( I.GT.1 ) THEN
 | 
						|
                  B( I, I-1 ) = -IMEPS
 | 
						|
               END IF
 | 
						|
            ELSE IF( I.LE.8 ) THEN
 | 
						|
               IF( I.LE.6 ) THEN
 | 
						|
                  B( I, I ) = REEPS
 | 
						|
               ELSE
 | 
						|
                  B( I, I ) = -REEPS
 | 
						|
               END IF
 | 
						|
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
 | 
						|
                  B( I, I+1 ) = ONE + IMEPS
 | 
						|
               ELSE IF( I.GT.1 ) THEN
 | 
						|
                  B( I, I-1 ) = -ONE - IMEPS
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               B( I, I ) = ONE - REEPS
 | 
						|
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
 | 
						|
                  B( I, I+1 ) = IMEPS*2
 | 
						|
               ELSE IF( I.GT.1 ) THEN
 | 
						|
                  B( I, I-1 ) = -IMEPS*2
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
  250    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute rhs (C, F)
 | 
						|
*
 | 
						|
      CALL CGEMM( 'N', 'N', M, N, M, ONE, A, LDA, R, LDR, ZERO, C, LDC )
 | 
						|
      CALL CGEMM( 'N', 'N', M, N, N, -ONE, L, LDL, B, LDB, ONE, C, LDC )
 | 
						|
      CALL CGEMM( 'N', 'N', M, N, M, ONE, D, LDD, R, LDR, ZERO, F, LDF )
 | 
						|
      CALL CGEMM( 'N', 'N', M, N, N, -ONE, L, LDL, E, LDE, ONE, F, LDF )
 | 
						|
*
 | 
						|
*     End of CLATM5
 | 
						|
*
 | 
						|
      END
 |