187 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			187 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGET03
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
 | 
						|
*                          RCOND, RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDAINV, LDWORK, N
 | 
						|
*       DOUBLE PRECISION   RCOND, RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
 | 
						|
*      $                   WORK( LDWORK, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGET03 computes the residual for a general matrix times its inverse:
 | 
						|
*>    norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          The original N x N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AINV
 | 
						|
*> \verbatim
 | 
						|
*>          AINV is DOUBLE PRECISION array, dimension (LDAINV,N)
 | 
						|
*>          The inverse of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAINV
 | 
						|
*> \verbatim
 | 
						|
*>          LDAINV is INTEGER
 | 
						|
*>          The leading dimension of the array AINV.  LDAINV >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (LDWORK,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LDWORK is INTEGER
 | 
						|
*>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>          The reciprocal of the condition number of A, computed as
 | 
						|
*>          ( 1/norm(A) ) / norm(AINV).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
 | 
						|
     $                   RCOND, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDAINV, LDWORK, N
 | 
						|
      DOUBLE PRECISION   RCOND, RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
 | 
						|
     $                   WORK( LDWORK, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I
 | 
						|
      DOUBLE PRECISION   AINVNM, ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE
 | 
						|
      EXTERNAL           DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      ANORM = DLANGE( '1', N, N, A, LDA, RWORK )
 | 
						|
      AINVNM = DLANGE( '1', N, N, AINV, LDAINV, RWORK )
 | 
						|
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | 
						|
         RCOND = ZERO
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      RCOND = ( ONE / ANORM ) / AINVNM
 | 
						|
*
 | 
						|
*     Compute I - A * AINV
 | 
						|
*
 | 
						|
      CALL DGEMM( 'No transpose', 'No transpose', N, N, N, -ONE, AINV,
 | 
						|
     $            LDAINV, A, LDA, ZERO, WORK, LDWORK )
 | 
						|
      DO 10 I = 1, N
 | 
						|
         WORK( I, I ) = ONE + WORK( I, I )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Compute norm(I - AINV*A) / (N * norm(A) * norm(AINV) * EPS)
 | 
						|
*
 | 
						|
      RESID = DLANGE( '1', N, N, WORK, LDWORK, RWORK )
 | 
						|
*
 | 
						|
      RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGET03
 | 
						|
*
 | 
						|
      END
 |