281 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGET51
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
 | |
| *                          RWORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            ITYPE, LDA, LDB, LDU, LDV, N
 | |
| *       DOUBLE PRECISION   RESULT
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), B( LDB, * ), U( LDU, * ),
 | |
| *      $                   V( LDV, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>      ZGET51  generally checks a decomposition of the form
 | |
| *>
 | |
| *>              A = U B VC>
 | |
| *>      where * means conjugate transpose and U and V are unitary.
 | |
| *>
 | |
| *>      Specifically, if ITYPE=1
 | |
| *>
 | |
| *>              RESULT = | A - U B V* | / ( |A| n ulp )
 | |
| *>
 | |
| *>      If ITYPE=2, then:
 | |
| *>
 | |
| *>              RESULT = | A - B | / ( |A| n ulp )
 | |
| *>
 | |
| *>      If ITYPE=3, then:
 | |
| *>
 | |
| *>              RESULT = | I - UU* | / ( n ulp )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          Specifies the type of tests to be performed.
 | |
| *>          =1: RESULT = | A - U B V* | / ( |A| n ulp )
 | |
| *>          =2: RESULT = | A - B | / ( |A| n ulp )
 | |
| *>          =3: RESULT = | I - UU* | / ( n ulp )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The size of the matrix.  If it is zero, ZGET51 does nothing.
 | |
| *>          It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA, N)
 | |
| *>          The original (unfactored) matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB, N)
 | |
| *>          The factored matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX*16 array, dimension (LDU, N)
 | |
| *>          The unitary matrix on the left-hand side in the
 | |
| *>          decomposition.
 | |
| *>          Not referenced if ITYPE=2
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of U.  LDU must be at least N and
 | |
| *>          at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX*16 array, dimension (LDV, N)
 | |
| *>          The unitary matrix on the left-hand side in the
 | |
| *>          decomposition.
 | |
| *>          Not referenced if ITYPE=2
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of V.  LDV must be at least N and
 | |
| *>          at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (2*N**2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION
 | |
| *>          The values computed by the test specified by ITYPE.  The
 | |
| *>          value is currently limited to 1/ulp, to avoid overflow.
 | |
| *>          Errors are flagged by RESULT=10/ulp.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
 | |
|      $                   RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            ITYPE, LDA, LDB, LDU, LDV, N
 | |
|       DOUBLE PRECISION   RESULT
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), B( LDB, * ), U( LDU, * ),
 | |
|      $                   V( LDV, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TEN
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
 | |
|       COMPLEX*16         CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | |
|      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            JCOL, JDIAG, JROW
 | |
|       DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE
 | |
|       EXTERNAL           DLAMCH, ZLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGEMM, ZLACPY
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RESULT = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Constants
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | |
| *
 | |
| *     Some Error Checks
 | |
| *
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          RESULT = TEN / ULP
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( ITYPE.LE.2 ) THEN
 | |
| *
 | |
| *        Tests scaled by the norm(A)
 | |
| *
 | |
|          ANORM = MAX( ZLANGE( '1', N, N, A, LDA, RWORK ), UNFL )
 | |
| *
 | |
|          IF( ITYPE.EQ.1 ) THEN
 | |
| *
 | |
| *           ITYPE=1: Compute W = A - UBV'
 | |
| *
 | |
|             CALL ZLACPY( ' ', N, N, A, LDA, WORK, N )
 | |
|             CALL ZGEMM( 'N', 'N', N, N, N, CONE, U, LDU, B, LDB, CZERO,
 | |
|      $                  WORK( N**2+1 ), N )
 | |
| *
 | |
|             CALL ZGEMM( 'N', 'C', N, N, N, -CONE, WORK( N**2+1 ), N, V,
 | |
|      $                  LDV, CONE, WORK, N )
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           ITYPE=2: Compute W = A - B
 | |
| *
 | |
|             CALL ZLACPY( ' ', N, N, B, LDB, WORK, N )
 | |
| *
 | |
|             DO 20 JCOL = 1, N
 | |
|                DO 10 JROW = 1, N
 | |
|                   WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
 | |
|      $                - A( JROW, JCOL )
 | |
|    10          CONTINUE
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Compute norm(W)/ ( ulp*norm(A) )
 | |
| *
 | |
|          WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
 | |
| *
 | |
|          IF( ANORM.GT.WNORM ) THEN
 | |
|             RESULT = ( WNORM / ANORM ) / ( N*ULP )
 | |
|          ELSE
 | |
|             IF( ANORM.LT.ONE ) THEN
 | |
|                RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
 | |
|             ELSE
 | |
|                RESULT = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Tests not scaled by norm(A)
 | |
| *
 | |
| *        ITYPE=3: Compute  UU' - I
 | |
| *
 | |
|          CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
 | |
|      $               WORK, N )
 | |
| *
 | |
|          DO 30 JDIAG = 1, N
 | |
|             WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+
 | |
|      $         1 ) - CONE
 | |
|    30    CONTINUE
 | |
| *
 | |
|          RESULT = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
 | |
|      $            DBLE( N ) ) / ( N*ULP )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGET51
 | |
| *
 | |
|       END
 |