442 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			442 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSPT21
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
 | |
| *                          TAU, WORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            ITYPE, KBAND, LDU, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               AP( * ), D( * ), E( * ), RESULT( 2 ), TAU( * ),
 | |
| *      $                   U( LDU, * ), VP( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSPT21  generally checks a decomposition of the form
 | |
| *>
 | |
| *>         A = U S U'
 | |
| *>
 | |
| *> where ' means transpose, A is symmetric (stored in packed format), U
 | |
| *> is orthogonal, and S is diagonal (if KBAND=0) or symmetric
 | |
| *> tridiagonal (if KBAND=1).  If ITYPE=1, then U is represented as a
 | |
| *> dense matrix, otherwise the U is expressed as a product of
 | |
| *> Householder transformations, whose vectors are stored in the array
 | |
| *> "V" and whose scaling constants are in "TAU"; we shall use the
 | |
| *> letter "V" to refer to the product of Householder transformations
 | |
| *> (which should be equal to U).
 | |
| *>
 | |
| *> Specifically, if ITYPE=1, then:
 | |
| *>
 | |
| *>         RESULT(1) = | A - U S U' | / ( |A| n ulp ) *andC>         RESULT(2) = | I - UU' | / ( n ulp )
 | |
| *>
 | |
| *> If ITYPE=2, then:
 | |
| *>
 | |
| *>         RESULT(1) = | A - V S V' | / ( |A| n ulp )
 | |
| *>
 | |
| *> If ITYPE=3, then:
 | |
| *>
 | |
| *>         RESULT(1) = | I - VU' | / ( n ulp )
 | |
| *>
 | |
| *> Packed storage means that, for example, if UPLO='U', then the columns
 | |
| *> of the upper triangle of A are stored one after another, so that
 | |
| *> A(1,j+1) immediately follows A(j,j) in the array AP.  Similarly, if
 | |
| *> UPLO='L', then the columns of the lower triangle of A are stored one
 | |
| *> after another in AP, so that A(j+1,j+1) immediately follows A(n,j)
 | |
| *> in the array AP.  This means that A(i,j) is stored in:
 | |
| *>
 | |
| *>    AP( i + j*(j-1)/2 )                 if UPLO='U'
 | |
| *>
 | |
| *>    AP( i + (2*n-j)*(j-1)/2 )           if UPLO='L'
 | |
| *>
 | |
| *> The array VP bears the same relation to the matrix V that A does to
 | |
| *> AP.
 | |
| *>
 | |
| *> For ITYPE > 1, the transformation U is expressed as a product
 | |
| *> of Householder transformations:
 | |
| *>
 | |
| *>    If UPLO='U', then  V = H(n-1)...H(1),  where
 | |
| *>
 | |
| *>        H(j) = I  -  tau(j) v(j) v(j)'
 | |
| *>
 | |
| *>    and the first j-1 elements of v(j) are stored in V(1:j-1,j+1),
 | |
| *>    (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ),
 | |
| *>    the j-th element is 1, and the last n-j elements are 0.
 | |
| *>
 | |
| *>    If UPLO='L', then  V = H(1)...H(n-1),  where
 | |
| *>
 | |
| *>        H(j) = I  -  tau(j) v(j) v(j)'
 | |
| *>
 | |
| *>    and the first j elements of v(j) are 0, the (j+1)-st is 1, and the
 | |
| *>    (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e.,
 | |
| *>    in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          Specifies the type of tests to be performed.
 | |
| *>          1: U expressed as a dense orthogonal matrix:
 | |
| *>             RESULT(1) = | A - U S U' | / ( |A| n ulp )   *andC>             RESULT(2) = | I - UU' | / ( n ulp )
 | |
| *>
 | |
| *>          2: U expressed as a product V of Housholder transformations:
 | |
| *>             RESULT(1) = | A - V S V' | / ( |A| n ulp )
 | |
| *>
 | |
| *>          3: U expressed both as a dense orthogonal matrix and
 | |
| *>             as a product of Housholder transformations:
 | |
| *>             RESULT(1) = | I - VU' | / ( n ulp )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER
 | |
| *>          If UPLO='U', AP and VP are considered to contain the upper
 | |
| *>          triangle of A and V.
 | |
| *>          If UPLO='L', AP and VP are considered to contain the lower
 | |
| *>          triangle of A and V.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The size of the matrix.  If it is zero, SSPT21 does nothing.
 | |
| *>          It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KBAND
 | |
| *> \verbatim
 | |
| *>          KBAND is INTEGER
 | |
| *>          The bandwidth of the matrix.  It may only be zero or one.
 | |
| *>          If zero, then S is diagonal, and E is not referenced.  If
 | |
| *>          one, then S is symmetric tri-diagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AP
 | |
| *> \verbatim
 | |
| *>          AP is REAL array, dimension (N*(N+1)/2)
 | |
| *>          The original (unfactored) matrix.  It is assumed to be
 | |
| *>          symmetric, and contains the columns of just the upper
 | |
| *>          triangle (UPLO='U') or only the lower triangle (UPLO='L'),
 | |
| *>          packed one after another.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The diagonal of the (symmetric tri-) diagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          The off-diagonal of the (symmetric tri-) diagonal matrix.
 | |
| *>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
 | |
| *>          (3,2) element, etc.
 | |
| *>          Not referenced if KBAND=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is REAL array, dimension (LDU, N)
 | |
| *>          If ITYPE=1 or 3, this contains the orthogonal matrix in
 | |
| *>          the decomposition, expressed as a dense matrix.  If ITYPE=2,
 | |
| *>          then it is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of U.  LDU must be at least N and
 | |
| *>          at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VP
 | |
| *> \verbatim
 | |
| *>          VP is REAL array, dimension (N*(N+1)/2)
 | |
| *>          If ITYPE=2 or 3, the columns of this array contain the
 | |
| *>          Householder vectors used to describe the orthogonal matrix
 | |
| *>          in the decomposition, as described in purpose.
 | |
| *>          *NOTE* If ITYPE=2 or 3, V is modified and restored.  The
 | |
| *>          subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
 | |
| *>          is set to one, and later reset to its original value, during
 | |
| *>          the course of the calculation.
 | |
| *>          If ITYPE=1, then it is neither referenced nor modified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (N)
 | |
| *>          If ITYPE >= 2, then TAU(j) is the scalar factor of
 | |
| *>          v(j) v(j)' in the Householder transformation H(j) of
 | |
| *>          the product  U = H(1)...H(n-2)
 | |
| *>          If ITYPE < 2, then TAU is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (N**2+N)
 | |
| *>          Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (2)
 | |
| *>          The values computed by the two tests described above.  The
 | |
| *>          values are currently limited to 1/ulp, to avoid overflow.
 | |
| *>          RESULT(1) is always modified.  RESULT(2) is modified only
 | |
| *>          if ITYPE=1.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
 | |
|      $                   TAU, WORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            ITYPE, KBAND, LDU, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               AP( * ), D( * ), E( * ), RESULT( 2 ), TAU( * ),
 | |
|      $                   U( LDU, * ), VP( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TEN
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TEN = 10.0E0 )
 | |
|       REAL               HALF
 | |
|       PARAMETER          ( HALF = 1.0E+0 / 2.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LOWER
 | |
|       CHARACTER          CUPLO
 | |
|       INTEGER            IINFO, J, JP, JP1, JR, LAP
 | |
|       REAL               ANORM, TEMP, ULP, UNFL, VSAVE, WNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SDOT, SLAMCH, SLANGE, SLANSP
 | |
|       EXTERNAL           LSAME, SDOT, SLAMCH, SLANGE, SLANSP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SCOPY, SGEMM, SLACPY, SLASET, SOPMTR,
 | |
|      $                   SSPMV, SSPR, SSPR2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     1)      Constants
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       IF( ITYPE.EQ.1 )
 | |
|      $   RESULT( 2 ) = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       LAP = ( N*( N+1 ) ) / 2
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          LOWER = .FALSE.
 | |
|          CUPLO = 'U'
 | |
|       ELSE
 | |
|          LOWER = .TRUE.
 | |
|          CUPLO = 'L'
 | |
|       END IF
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | |
| *
 | |
| *     Some Error Checks
 | |
| *
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          RESULT( 1 ) = TEN / ULP
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Do Test 1
 | |
| *
 | |
| *     Norm of A:
 | |
| *
 | |
|       IF( ITYPE.EQ.3 ) THEN
 | |
|          ANORM = ONE
 | |
|       ELSE
 | |
|          ANORM = MAX( SLANSP( '1', CUPLO, N, AP, WORK ), UNFL )
 | |
|       END IF
 | |
| *
 | |
| *     Compute error matrix:
 | |
| *
 | |
|       IF( ITYPE.EQ.1 ) THEN
 | |
| *
 | |
| *        ITYPE=1: error = A - U S U'
 | |
| *
 | |
|          CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
 | |
|          CALL SCOPY( LAP, AP, 1, WORK, 1 )
 | |
| *
 | |
|          DO 10 J = 1, N
 | |
|             CALL SSPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
 | |
|    10    CONTINUE
 | |
| *
 | |
|          IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
 | |
|             DO 20 J = 1, N - 1
 | |
|                CALL SSPR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ),
 | |
|      $                     1, WORK )
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|          WNORM = SLANSP( '1', CUPLO, N, WORK, WORK( N**2+1 ) )
 | |
| *
 | |
|       ELSE IF( ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *        ITYPE=2: error = V S V' - A
 | |
| *
 | |
|          CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
 | |
| *
 | |
|          IF( LOWER ) THEN
 | |
|             WORK( LAP ) = D( N )
 | |
|             DO 40 J = N - 1, 1, -1
 | |
|                JP = ( ( 2*N-J )*( J-1 ) ) / 2
 | |
|                JP1 = JP + N - J
 | |
|                IF( KBAND.EQ.1 ) THEN
 | |
|                   WORK( JP+J+1 ) = ( ONE-TAU( J ) )*E( J )
 | |
|                   DO 30 JR = J + 2, N
 | |
|                      WORK( JP+JR ) = -TAU( J )*E( J )*VP( JP+JR )
 | |
|    30             CONTINUE
 | |
|                END IF
 | |
| *
 | |
|                IF( TAU( J ).NE.ZERO ) THEN
 | |
|                   VSAVE = VP( JP+J+1 )
 | |
|                   VP( JP+J+1 ) = ONE
 | |
|                   CALL SSPMV( 'L', N-J, ONE, WORK( JP1+J+1 ),
 | |
|      $                        VP( JP+J+1 ), 1, ZERO, WORK( LAP+1 ), 1 )
 | |
|                   TEMP = -HALF*TAU( J )*SDOT( N-J, WORK( LAP+1 ), 1,
 | |
|      $                   VP( JP+J+1 ), 1 )
 | |
|                   CALL SAXPY( N-J, TEMP, VP( JP+J+1 ), 1, WORK( LAP+1 ),
 | |
|      $                        1 )
 | |
|                   CALL SSPR2( 'L', N-J, -TAU( J ), VP( JP+J+1 ), 1,
 | |
|      $                        WORK( LAP+1 ), 1, WORK( JP1+J+1 ) )
 | |
|                   VP( JP+J+1 ) = VSAVE
 | |
|                END IF
 | |
|                WORK( JP+J ) = D( J )
 | |
|    40       CONTINUE
 | |
|          ELSE
 | |
|             WORK( 1 ) = D( 1 )
 | |
|             DO 60 J = 1, N - 1
 | |
|                JP = ( J*( J-1 ) ) / 2
 | |
|                JP1 = JP + J
 | |
|                IF( KBAND.EQ.1 ) THEN
 | |
|                   WORK( JP1+J ) = ( ONE-TAU( J ) )*E( J )
 | |
|                   DO 50 JR = 1, J - 1
 | |
|                      WORK( JP1+JR ) = -TAU( J )*E( J )*VP( JP1+JR )
 | |
|    50             CONTINUE
 | |
|                END IF
 | |
| *
 | |
|                IF( TAU( J ).NE.ZERO ) THEN
 | |
|                   VSAVE = VP( JP1+J )
 | |
|                   VP( JP1+J ) = ONE
 | |
|                   CALL SSPMV( 'U', J, ONE, WORK, VP( JP1+1 ), 1, ZERO,
 | |
|      $                        WORK( LAP+1 ), 1 )
 | |
|                   TEMP = -HALF*TAU( J )*SDOT( J, WORK( LAP+1 ), 1,
 | |
|      $                   VP( JP1+1 ), 1 )
 | |
|                   CALL SAXPY( J, TEMP, VP( JP1+1 ), 1, WORK( LAP+1 ),
 | |
|      $                        1 )
 | |
|                   CALL SSPR2( 'U', J, -TAU( J ), VP( JP1+1 ), 1,
 | |
|      $                        WORK( LAP+1 ), 1, WORK )
 | |
|                   VP( JP1+J ) = VSAVE
 | |
|                END IF
 | |
|                WORK( JP1+J+1 ) = D( J+1 )
 | |
|    60       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          DO 70 J = 1, LAP
 | |
|             WORK( J ) = WORK( J ) - AP( J )
 | |
|    70    CONTINUE
 | |
|          WNORM = SLANSP( '1', CUPLO, N, WORK, WORK( LAP+1 ) )
 | |
| *
 | |
|       ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *        ITYPE=3: error = U V' - I
 | |
| *
 | |
|          IF( N.LT.2 )
 | |
|      $      RETURN
 | |
|          CALL SLACPY( ' ', N, N, U, LDU, WORK, N )
 | |
|          CALL SOPMTR( 'R', CUPLO, 'T', N, N, VP, TAU, WORK, N,
 | |
|      $                WORK( N**2+1 ), IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             RESULT( 1 ) = TEN / ULP
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
|          DO 80 J = 1, N
 | |
|             WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
 | |
|    80    CONTINUE
 | |
| *
 | |
|          WNORM = SLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) )
 | |
|       END IF
 | |
| *
 | |
|       IF( ANORM.GT.WNORM ) THEN
 | |
|          RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
 | |
|       ELSE
 | |
|          IF( ANORM.LT.ONE ) THEN
 | |
|             RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
 | |
|          ELSE
 | |
|             RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Do Test 2
 | |
| *
 | |
| *     Compute  UU' - I
 | |
| *
 | |
|       IF( ITYPE.EQ.1 ) THEN
 | |
|          CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
 | |
|      $               N )
 | |
| *
 | |
|          DO 90 J = 1, N
 | |
|             WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
 | |
|    90    CONTINUE
 | |
| *
 | |
|          RESULT( 2 ) = MIN( SLANGE( '1', N, N, WORK, N,
 | |
|      $                 WORK( N**2+1 ) ), REAL( N ) ) / ( N*ULP )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSPT21
 | |
| *
 | |
|       END
 |