384 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGET52
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR,
 | |
| *                          ALPHAI, BETA, WORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            LEFT
 | |
| *       INTEGER            LDA, LDB, LDE, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
| *      $                   B( LDB, * ), BETA( * ), E( LDE, * ),
 | |
| *      $                   RESULT( 2 ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGET52  does an eigenvector check for the generalized eigenvalue
 | |
| *> problem.
 | |
| *>
 | |
| *> The basic test for right eigenvectors is:
 | |
| *>
 | |
| *>                           | b(j) A E(j) -  a(j) B E(j) |
 | |
| *>         RESULT(1) = max   -------------------------------
 | |
| *>                      j    n ulp max( |b(j) A|, |a(j) B| )
 | |
| *>
 | |
| *> using the 1-norm.  Here, a(j)/b(j) = w is the j-th generalized
 | |
| *> eigenvalue of A - w B, or, equivalently, b(j)/a(j) = m is the j-th
 | |
| *> generalized eigenvalue of m A - B.
 | |
| *>
 | |
| *> For real eigenvalues, the test is straightforward.  For complex
 | |
| *> eigenvalues, E(j) and a(j) are complex, represented by
 | |
| *> Er(j) + i*Ei(j) and ar(j) + i*ai(j), resp., so the test for that
 | |
| *> eigenvector becomes
 | |
| *>
 | |
| *>                 max( |Wr|, |Wi| )
 | |
| *>     --------------------------------------------
 | |
| *>     n ulp max( |b(j) A|, (|ar(j)|+|ai(j)|) |B| )
 | |
| *>
 | |
| *> where
 | |
| *>
 | |
| *>     Wr = b(j) A Er(j) - ar(j) B Er(j) + ai(j) B Ei(j)
 | |
| *>
 | |
| *>     Wi = b(j) A Ei(j) - ai(j) B Er(j) - ar(j) B Ei(j)
 | |
| *>
 | |
| *>                         T   T  _
 | |
| *> For left eigenvectors, A , B , a, and b  are used.
 | |
| *>
 | |
| *> SGET52 also tests the normalization of E.  Each eigenvector is
 | |
| *> supposed to be normalized so that the maximum "absolute value"
 | |
| *> of its elements is 1, where in this case, "absolute value"
 | |
| *> of a complex value x is  |Re(x)| + |Im(x)| ; let us call this
 | |
| *> maximum "absolute value" norm of a vector v  M(v). 
 | |
| *> if a(j)=b(j)=0, then the eigenvector is set to be the jth coordinate
 | |
| *> vector.  The normalization test is:
 | |
| *>
 | |
| *>         RESULT(2) =      max       | M(v(j)) - 1 | / ( n ulp )
 | |
| *>                    eigenvectors v(j)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] LEFT
 | |
| *> \verbatim
 | |
| *>          LEFT is LOGICAL
 | |
| *>          =.TRUE.:  The eigenvectors in the columns of E are assumed
 | |
| *>                    to be *left* eigenvectors.
 | |
| *>          =.FALSE.: The eigenvectors in the columns of E are assumed
 | |
| *>                    to be *right* eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The size of the matrices.  If it is zero, SGET52 does
 | |
| *>          nothing.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA, N)
 | |
| *>          The matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB, N)
 | |
| *>          The matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  It must be at least 1
 | |
| *>          and at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (LDE, N)
 | |
| *>          The matrix of eigenvectors.  It must be O( 1 ).  Complex
 | |
| *>          eigenvalues and eigenvectors always come in pairs, the
 | |
| *>          eigenvalue and its conjugate being stored in adjacent
 | |
| *>          elements of ALPHAR, ALPHAI, and BETA.  Thus, if a(j)/b(j)
 | |
| *>          and a(j+1)/b(j+1) are a complex conjugate pair of
 | |
| *>          generalized eigenvalues, then E(,j) contains the real part
 | |
| *>          of the eigenvector and E(,j+1) contains the imaginary part.
 | |
| *>          Note that whether E(,j) is a real eigenvector or part of a
 | |
| *>          complex one is specified by whether ALPHAI(j) is zero or not.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDE
 | |
| *> \verbatim
 | |
| *>          LDE is INTEGER
 | |
| *>          The leading dimension of E.  It must be at least 1 and at
 | |
| *>          least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is REAL array, dimension (N)
 | |
| *>          The real parts of the values a(j) as described above, which,
 | |
| *>          along with b(j), define the generalized eigenvalues.
 | |
| *>          Complex eigenvalues always come in complex conjugate pairs
 | |
| *>          a(j)/b(j) and a(j+1)/b(j+1), which are stored in adjacent
 | |
| *>          elements in ALPHAR, ALPHAI, and BETA.  Thus, if the j-th
 | |
| *>          and (j+1)-st eigenvalues form a pair, ALPHAR(j+1)/BETA(j+1)
 | |
| *>          is assumed to be equal to ALPHAR(j)/BETA(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is REAL array, dimension (N)
 | |
| *>          The imaginary parts of the values a(j) as described above,
 | |
| *>          which, along with b(j), define the generalized eigenvalues.
 | |
| *>          If ALPHAI(j)=0, then the eigenvalue is real, otherwise it
 | |
| *>          is part of a complex conjugate pair.  Complex eigenvalues
 | |
| *>          always come in complex conjugate pairs a(j)/b(j) and
 | |
| *>          a(j+1)/b(j+1), which are stored in adjacent elements in
 | |
| *>          ALPHAR, ALPHAI, and BETA.  Thus, if the j-th and (j+1)-st
 | |
| *>          eigenvalues form a pair, ALPHAI(j+1)/BETA(j+1) is assumed to
 | |
| *>          be equal to  -ALPHAI(j)/BETA(j).  Also, nonzero values in
 | |
| *>          ALPHAI are assumed to always come in adjacent pairs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL array, dimension (N)
 | |
| *>          The values b(j) as described above, which, along with a(j),
 | |
| *>          define the generalized eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (N**2+N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (2)
 | |
| *>          The values computed by the test described above.  If A E or
 | |
| *>          B E is likely to overflow, then RESULT(1:2) is set to
 | |
| *>          10 / ulp.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR,
 | |
|      $                   ALPHAI, BETA, WORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            LEFT
 | |
|       INTEGER            LDA, LDB, LDE, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
|      $                   B( LDB, * ), BETA( * ), E( LDE, * ),
 | |
|      $                   RESULT( 2 ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TEN
 | |
|       PARAMETER          ( ZERO = 0.0, ONE = 1.0, TEN = 10.0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ILCPLX
 | |
|       CHARACTER          NORMAB, TRANS
 | |
|       INTEGER            J, JVEC
 | |
|       REAL               ABMAX, ACOEF, ALFMAX, ANORM, BCOEFI, BCOEFR,
 | |
|      $                   BETMAX, BNORM, ENORM, ENRMER, ERRNRM, SAFMAX,
 | |
|      $                   SAFMIN, SALFI, SALFR, SBETA, SCALE, TEMP1, ULP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       RESULT( 2 ) = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       SAFMAX = ONE / SAFMIN
 | |
|       ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | |
| *
 | |
|       IF( LEFT ) THEN
 | |
|          TRANS = 'T'
 | |
|          NORMAB = 'I'
 | |
|       ELSE
 | |
|          TRANS = 'N'
 | |
|          NORMAB = 'O'
 | |
|       END IF
 | |
| *
 | |
| *     Norm of A, B, and E:
 | |
| *
 | |
|       ANORM = MAX( SLANGE( NORMAB, N, N, A, LDA, WORK ), SAFMIN )
 | |
|       BNORM = MAX( SLANGE( NORMAB, N, N, B, LDB, WORK ), SAFMIN )
 | |
|       ENORM = MAX( SLANGE( 'O', N, N, E, LDE, WORK ), ULP )
 | |
|       ALFMAX = SAFMAX / MAX( ONE, BNORM )
 | |
|       BETMAX = SAFMAX / MAX( ONE, ANORM )
 | |
| *
 | |
| *     Compute error matrix.
 | |
| *     Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B| |b(i) A| )
 | |
| *
 | |
|       ILCPLX = .FALSE.
 | |
|       DO 10 JVEC = 1, N
 | |
|          IF( ILCPLX ) THEN
 | |
| *
 | |
| *           2nd Eigenvalue/-vector of pair -- do nothing
 | |
| *
 | |
|             ILCPLX = .FALSE.
 | |
|          ELSE
 | |
|             SALFR = ALPHAR( JVEC )
 | |
|             SALFI = ALPHAI( JVEC )
 | |
|             SBETA = BETA( JVEC )
 | |
|             IF( SALFI.EQ.ZERO ) THEN
 | |
| *
 | |
| *              Real eigenvalue and -vector
 | |
| *
 | |
|                ABMAX = MAX( ABS( SALFR ), ABS( SBETA ) )
 | |
|                IF( ABS( SALFR ).GT.ALFMAX .OR. ABS( SBETA ).GT.
 | |
|      $             BETMAX .OR. ABMAX.LT.ONE ) THEN
 | |
|                   SCALE = ONE / MAX( ABMAX, SAFMIN )
 | |
|                   SALFR = SCALE*SALFR
 | |
|                   SBETA = SCALE*SBETA
 | |
|                END IF
 | |
|                SCALE = ONE / MAX( ABS( SALFR )*BNORM,
 | |
|      $                 ABS( SBETA )*ANORM, SAFMIN )
 | |
|                ACOEF = SCALE*SBETA
 | |
|                BCOEFR = SCALE*SALFR
 | |
|                CALL SGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1,
 | |
|      $                     ZERO, WORK( N*( JVEC-1 )+1 ), 1 )
 | |
|                CALL SGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ),
 | |
|      $                     1, ONE, WORK( N*( JVEC-1 )+1 ), 1 )
 | |
|             ELSE
 | |
| *
 | |
| *              Complex conjugate pair
 | |
| *
 | |
|                ILCPLX = .TRUE.
 | |
|                IF( JVEC.EQ.N ) THEN
 | |
|                   RESULT( 1 ) = TEN / ULP
 | |
|                   RETURN
 | |
|                END IF
 | |
|                ABMAX = MAX( ABS( SALFR )+ABS( SALFI ), ABS( SBETA ) )
 | |
|                IF( ABS( SALFR )+ABS( SALFI ).GT.ALFMAX .OR.
 | |
|      $             ABS( SBETA ).GT.BETMAX .OR. ABMAX.LT.ONE ) THEN
 | |
|                   SCALE = ONE / MAX( ABMAX, SAFMIN )
 | |
|                   SALFR = SCALE*SALFR
 | |
|                   SALFI = SCALE*SALFI
 | |
|                   SBETA = SCALE*SBETA
 | |
|                END IF
 | |
|                SCALE = ONE / MAX( ( ABS( SALFR )+ABS( SALFI ) )*BNORM,
 | |
|      $                 ABS( SBETA )*ANORM, SAFMIN )
 | |
|                ACOEF = SCALE*SBETA
 | |
|                BCOEFR = SCALE*SALFR
 | |
|                BCOEFI = SCALE*SALFI
 | |
|                IF( LEFT ) THEN
 | |
|                   BCOEFI = -BCOEFI
 | |
|                END IF
 | |
| *
 | |
|                CALL SGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1,
 | |
|      $                     ZERO, WORK( N*( JVEC-1 )+1 ), 1 )
 | |
|                CALL SGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ),
 | |
|      $                     1, ONE, WORK( N*( JVEC-1 )+1 ), 1 )
 | |
|                CALL SGEMV( TRANS, N, N, BCOEFI, B, LDA, E( 1, JVEC+1 ),
 | |
|      $                     1, ONE, WORK( N*( JVEC-1 )+1 ), 1 )
 | |
| *
 | |
|                CALL SGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC+1 ),
 | |
|      $                     1, ZERO, WORK( N*JVEC+1 ), 1 )
 | |
|                CALL SGEMV( TRANS, N, N, -BCOEFI, B, LDA, E( 1, JVEC ),
 | |
|      $                     1, ONE, WORK( N*JVEC+1 ), 1 )
 | |
|                CALL SGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC+1 ),
 | |
|      $                     1, ONE, WORK( N*JVEC+1 ), 1 )
 | |
|             END IF
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
| *
 | |
|       ERRNRM = SLANGE( 'One', N, N, WORK, N, WORK( N**2+1 ) ) / ENORM
 | |
| *
 | |
| *     Compute RESULT(1)
 | |
| *
 | |
|       RESULT( 1 ) = ERRNRM / ULP
 | |
| *
 | |
| *     Normalization of E:
 | |
| *
 | |
|       ENRMER = ZERO
 | |
|       ILCPLX = .FALSE.
 | |
|       DO 40 JVEC = 1, N
 | |
|          IF( ILCPLX ) THEN
 | |
|             ILCPLX = .FALSE.
 | |
|          ELSE
 | |
|             TEMP1 = ZERO
 | |
|             IF( ALPHAI( JVEC ).EQ.ZERO ) THEN
 | |
|                DO 20 J = 1, N
 | |
|                   TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) )
 | |
|    20          CONTINUE
 | |
|                ENRMER = MAX( ENRMER, TEMP1-ONE )
 | |
|             ELSE
 | |
|                ILCPLX = .TRUE.
 | |
|                DO 30 J = 1, N
 | |
|                   TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+
 | |
|      $                    ABS( E( J, JVEC+1 ) ) )
 | |
|    30          CONTINUE
 | |
|                ENRMER = MAX( ENRMER, TEMP1-ONE )
 | |
|             END IF
 | |
|          END IF
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Compute RESULT(2) : the normalization error in E.
 | |
| *
 | |
|       RESULT( 2 ) = ENRMER / ( REAL( N )*ULP )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGET52
 | |
| *
 | |
|       END
 |