312 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CUNT03
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CUNT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK,
 | |
| *                          RWORK, RESULT, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER*( * )    RC
 | |
| *       INTEGER            INFO, K, LDU, LDV, LWORK, MU, MV, N
 | |
| *       REAL               RESULT
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            U( LDU, * ), V( LDV, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CUNT03 compares two unitary matrices U and V to see if their
 | |
| *> corresponding rows or columns span the same spaces.  The rows are
 | |
| *> checked if RC = 'R', and the columns are checked if RC = 'C'.
 | |
| *>
 | |
| *> RESULT is the maximum of
 | |
| *>
 | |
| *>    | V*V' - I | / ( MV ulp ), if RC = 'R', or
 | |
| *>
 | |
| *>    | V'*V - I | / ( MV ulp ), if RC = 'C',
 | |
| *>
 | |
| *> and the maximum over rows (or columns) 1 to K of
 | |
| *>
 | |
| *>    | U(i) - S*V(i) |/ ( N ulp )
 | |
| *>
 | |
| *> where abs(S) = 1 (chosen to minimize the expression), U(i) is the
 | |
| *> i-th row (column) of U, and V(i) is the i-th row (column) of V.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] RC
 | |
| *> \verbatim
 | |
| *>          RC is CHARACTER*1
 | |
| *>          If RC = 'R' the rows of U and V are to be compared.
 | |
| *>          If RC = 'C' the columns of U and V are to be compared.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MU
 | |
| *> \verbatim
 | |
| *>          MU is INTEGER
 | |
| *>          The number of rows of U if RC = 'R', and the number of
 | |
| *>          columns if RC = 'C'.  If MU = 0 CUNT03 does nothing.
 | |
| *>          MU must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MV
 | |
| *> \verbatim
 | |
| *>          MV is INTEGER
 | |
| *>          The number of rows of V if RC = 'R', and the number of
 | |
| *>          columns if RC = 'C'.  If MV = 0 CUNT03 does nothing.
 | |
| *>          MV must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          If RC = 'R', the number of columns in the matrices U and V,
 | |
| *>          and if RC = 'C', the number of rows in U and V.  If N = 0
 | |
| *>          CUNT03 does nothing.  N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of rows or columns of U and V to compare.
 | |
| *>          0 <= K <= max(MU,MV).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX array, dimension (LDU,N)
 | |
| *>          The first matrix to compare.  If RC = 'R', U is MU by N, and
 | |
| *>          if RC = 'C', U is N by MU.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of U.  If RC = 'R', LDU >= max(1,MU),
 | |
| *>          and if RC = 'C', LDU >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX array, dimension (LDV,N)
 | |
| *>          The second matrix to compare.  If RC = 'R', V is MV by N, and
 | |
| *>          if RC = 'C', V is N by MV.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of V.  If RC = 'R', LDV >= max(1,MV),
 | |
| *>          and if RC = 'C', LDV >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  For best performance, LWORK
 | |
| *>          should be at least N*N if RC = 'C' or M*M if RC = 'R', but
 | |
| *>          the tests will be done even if LWORK is 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (max(MV,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL
 | |
| *>          The value computed by the test described above.  RESULT is
 | |
| *>          limited to 1/ulp to avoid overflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          0  indicates a successful exit
 | |
| *>          -k indicates the k-th parameter had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CUNT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK,
 | |
|      $                   RWORK, RESULT, INFO )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER*( * )    RC
 | |
|       INTEGER            INFO, K, LDU, LDV, LWORK, MU, MV, N
 | |
|       REAL               RESULT
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            U( LDU, * ), V( LDV, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IRC, J, LMX
 | |
|       REAL               RES1, RES2, ULP
 | |
|       COMPLEX            S, SU, SV
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ICAMAX
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           LSAME, ICAMAX, SLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CMPLX, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CUNT01, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Check inputs
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( LSAME( RC, 'R' ) ) THEN
 | |
|          IRC = 0
 | |
|       ELSE IF( LSAME( RC, 'C' ) ) THEN
 | |
|          IRC = 1
 | |
|       ELSE
 | |
|          IRC = -1
 | |
|       END IF
 | |
|       IF( IRC.EQ.-1 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( MU.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( MV.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( K.LT.0 .OR. K.GT.MAX( MU, MV ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( ( IRC.EQ.0 .AND. LDU.LT.MAX( 1, MU ) ) .OR.
 | |
|      $         ( IRC.EQ.1 .AND. LDU.LT.MAX( 1, N ) ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( ( IRC.EQ.0 .AND. LDV.LT.MAX( 1, MV ) ) .OR.
 | |
|      $         ( IRC.EQ.1 .AND. LDV.LT.MAX( 1, N ) ) ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CUNT03', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize result
 | |
| *
 | |
|       RESULT = ZERO
 | |
|       IF( MU.EQ.0 .OR. MV.EQ.0 .OR. N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Machine constants
 | |
| *
 | |
|       ULP = SLAMCH( 'Precision' )
 | |
| *
 | |
|       IF( IRC.EQ.0 ) THEN
 | |
| *
 | |
| *        Compare rows
 | |
| *
 | |
|          RES1 = ZERO
 | |
|          DO 20 I = 1, K
 | |
|             LMX = ICAMAX( N, U( I, 1 ), LDU )
 | |
|             IF( V( I, LMX ).EQ.CMPLX( ZERO ) ) THEN
 | |
|                SV = ONE
 | |
|             ELSE
 | |
|                SV = ABS( V( I, LMX ) ) / V( I, LMX )
 | |
|             END IF
 | |
|             IF( U( I, LMX ).EQ.CMPLX( ZERO ) ) THEN
 | |
|                SU = ONE
 | |
|             ELSE
 | |
|                SU = ABS( U( I, LMX ) ) / U( I, LMX )
 | |
|             END IF
 | |
|             S = SV / SU
 | |
|             DO 10 J = 1, N
 | |
|                RES1 = MAX( RES1, ABS( U( I, J )-S*V( I, J ) ) )
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
|          RES1 = RES1 / ( REAL( N )*ULP )
 | |
| *
 | |
| *        Compute orthogonality of rows of V.
 | |
| *
 | |
|          CALL CUNT01( 'Rows', MV, N, V, LDV, WORK, LWORK, RWORK, RES2 )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compare columns
 | |
| *
 | |
|          RES1 = ZERO
 | |
|          DO 40 I = 1, K
 | |
|             LMX = ICAMAX( N, U( 1, I ), 1 )
 | |
|             IF( V( LMX, I ).EQ.CMPLX( ZERO ) ) THEN
 | |
|                SV = ONE
 | |
|             ELSE
 | |
|                SV = ABS( V( LMX, I ) ) / V( LMX, I )
 | |
|             END IF
 | |
|             IF( U( LMX, I ).EQ.CMPLX( ZERO ) ) THEN
 | |
|                SU = ONE
 | |
|             ELSE
 | |
|                SU = ABS( U( LMX, I ) ) / U( LMX, I )
 | |
|             END IF
 | |
|             S = SV / SU
 | |
|             DO 30 J = 1, N
 | |
|                RES1 = MAX( RES1, ABS( U( J, I )-S*V( J, I ) ) )
 | |
|    30       CONTINUE
 | |
|    40    CONTINUE
 | |
|          RES1 = RES1 / ( REAL( N )*ULP )
 | |
| *
 | |
| *        Compute orthogonality of columns of V.
 | |
| *
 | |
|          CALL CUNT01( 'Columns', N, MV, V, LDV, WORK, LWORK, RWORK,
 | |
|      $                RES2 )
 | |
|       END IF
 | |
| *
 | |
|       RESULT = MIN( MAX( RES1, RES2 ), ONE / ULP )
 | |
|       RETURN
 | |
| *
 | |
| *     End of CUNT03
 | |
| *
 | |
|       END
 |