873 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			873 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c__4 = 4;
 | 
						|
static integer c__12 = 12;
 | 
						|
static integer c__8 = 8;
 | 
						|
static integer c__40 = 40;
 | 
						|
static integer c__2 = 2;
 | 
						|
static integer c__3 = 3;
 | 
						|
static integer c__60 = 60;
 | 
						|
 | 
						|
/* > \brief \b SLATM6 */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA, */
 | 
						|
/*                          BETA, WX, WY, S, DIF ) */
 | 
						|
 | 
						|
/*       INTEGER            LDA, LDX, LDY, N, TYPE */
 | 
						|
/*       REAL               ALPHA, BETA, WX, WY */
 | 
						|
/*       REAL               A( LDA, * ), B( LDA, * ), DIF( * ), S( * ), */
 | 
						|
/*      $                   X( LDX, * ), Y( LDY, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SLATM6 generates test matrices for the generalized eigenvalue */
 | 
						|
/* > problem, their corresponding right and left eigenvector matrices, */
 | 
						|
/* > and also reciprocal condition numbers for all eigenvalues and */
 | 
						|
/* > the reciprocal condition numbers of eigenvectors corresponding to */
 | 
						|
/* > the 1th and 5th eigenvalues. */
 | 
						|
/* > */
 | 
						|
/* > Test Matrices */
 | 
						|
/* > ============= */
 | 
						|
/* > */
 | 
						|
/* > Two kinds of test matrix pairs */
 | 
						|
/* > */
 | 
						|
/* >       (A, B) = inverse(YH) * (Da, Db) * inverse(X) */
 | 
						|
/* > */
 | 
						|
/* > are used in the tests: */
 | 
						|
/* > */
 | 
						|
/* > Type 1: */
 | 
						|
/* >    Da = 1+a   0    0    0    0    Db = 1   0   0   0   0 */
 | 
						|
/* >          0   2+a   0    0    0         0   1   0   0   0 */
 | 
						|
/* >          0    0   3+a   0    0         0   0   1   0   0 */
 | 
						|
/* >          0    0    0   4+a   0         0   0   0   1   0 */
 | 
						|
/* >          0    0    0    0   5+a ,      0   0   0   0   1 , and */
 | 
						|
/* > */
 | 
						|
/* > Type 2: */
 | 
						|
/* >    Da =  1   -1    0    0    0    Db = 1   0   0   0   0 */
 | 
						|
/* >          1    1    0    0    0         0   1   0   0   0 */
 | 
						|
/* >          0    0    1    0    0         0   0   1   0   0 */
 | 
						|
/* >          0    0    0   1+a  1+b        0   0   0   1   0 */
 | 
						|
/* >          0    0    0  -1-b  1+a ,      0   0   0   0   1 . */
 | 
						|
/* > */
 | 
						|
/* > In both cases the same inverse(YH) and inverse(X) are used to compute */
 | 
						|
/* > (A, B), giving the exact eigenvectors to (A,B) as (YH, X): */
 | 
						|
/* > */
 | 
						|
/* > YH:  =  1    0   -y    y   -y    X =  1   0  -x  -x   x */
 | 
						|
/* >         0    1   -y    y   -y         0   1   x  -x  -x */
 | 
						|
/* >         0    0    1    0    0         0   0   1   0   0 */
 | 
						|
/* >         0    0    0    1    0         0   0   0   1   0 */
 | 
						|
/* >         0    0    0    0    1,        0   0   0   0   1 , */
 | 
						|
/* > */
 | 
						|
/* > where a, b, x and y will have all values independently of each other. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] TYPE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TYPE is INTEGER */
 | 
						|
/* >          Specifies the problem type (see further details). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          Size of the matrices A and B. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is REAL array, dimension (LDA, N). */
 | 
						|
/* >          On exit A N-by-N is initialized according to TYPE. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of A and of B. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is REAL array, dimension (LDA, N). */
 | 
						|
/* >          On exit B N-by-N is initialized according to TYPE. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] X */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X is REAL array, dimension (LDX, N). */
 | 
						|
/* >          On exit X is the N-by-N matrix of right eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDX */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDX is INTEGER */
 | 
						|
/* >          The leading dimension of X. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] Y */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Y is REAL array, dimension (LDY, N). */
 | 
						|
/* >          On exit Y is the N-by-N matrix of left eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDY */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDY is INTEGER */
 | 
						|
/* >          The leading dimension of Y. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] ALPHA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHA is REAL */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] BETA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BETA is REAL */
 | 
						|
/* > */
 | 
						|
/* >          Weighting constants for matrix A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] WX */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WX is REAL */
 | 
						|
/* >          Constant for right eigenvector matrix. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] WY */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WY is REAL */
 | 
						|
/* >          Constant for left eigenvector matrix. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] S */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          S is REAL array, dimension (N) */
 | 
						|
/* >          S(i) is the reciprocal condition number for eigenvalue i. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] DIF */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DIF is REAL array, dimension (N) */
 | 
						|
/* >          DIF(i) is the reciprocal condition number for eigenvector i. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup real_matgen */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int slatm6_(integer *type__, integer *n, real *a, integer *
 | 
						|
	lda, real *b, real *x, integer *ldx, real *y, integer *ldy, real *
 | 
						|
	alpha, real *beta, real *wx, real *wy, real *s, real *dif)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, y_dim1, 
 | 
						|
	    y_offset, i__1, i__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer info;
 | 
						|
    real work[100];
 | 
						|
    integer i__, j;
 | 
						|
    real z__[144]	/* was [12][12] */;
 | 
						|
    extern /* Subroutine */ int slakf2_(integer *, integer *, real *, integer 
 | 
						|
	    *, real *, real *, real *, real *, integer *), sgesvd_(char *, 
 | 
						|
	    char *, integer *, integer *, real *, integer *, real *, real *, 
 | 
						|
	    integer *, real *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, 
 | 
						|
	    integer *, real *, integer *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Generate test problem ... */
 | 
						|
/*     (Da, Db) ... */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    b_dim1 = *lda;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    x_dim1 = *ldx;
 | 
						|
    x_offset = 1 + x_dim1 * 1;
 | 
						|
    x -= x_offset;
 | 
						|
    y_dim1 = *ldy;
 | 
						|
    y_offset = 1 + y_dim1 * 1;
 | 
						|
    y -= y_offset;
 | 
						|
    --s;
 | 
						|
    --dif;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    i__1 = *n;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	i__2 = *n;
 | 
						|
	for (j = 1; j <= i__2; ++j) {
 | 
						|
 | 
						|
	    if (i__ == j) {
 | 
						|
		a[i__ + i__ * a_dim1] = (real) i__ + *alpha;
 | 
						|
		b[i__ + i__ * b_dim1] = 1.f;
 | 
						|
	    } else {
 | 
						|
		a[i__ + j * a_dim1] = 0.f;
 | 
						|
		b[i__ + j * b_dim1] = 0.f;
 | 
						|
	    }
 | 
						|
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
/* L20: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Form X and Y */
 | 
						|
 | 
						|
    slacpy_("F", n, n, &b[b_offset], lda, &y[y_offset], ldy);
 | 
						|
    y[y_dim1 + 3] = -(*wy);
 | 
						|
    y[y_dim1 + 4] = *wy;
 | 
						|
    y[y_dim1 + 5] = -(*wy);
 | 
						|
    y[(y_dim1 << 1) + 3] = -(*wy);
 | 
						|
    y[(y_dim1 << 1) + 4] = *wy;
 | 
						|
    y[(y_dim1 << 1) + 5] = -(*wy);
 | 
						|
 | 
						|
    slacpy_("F", n, n, &b[b_offset], lda, &x[x_offset], ldx);
 | 
						|
    x[x_dim1 * 3 + 1] = -(*wx);
 | 
						|
    x[(x_dim1 << 2) + 1] = -(*wx);
 | 
						|
    x[x_dim1 * 5 + 1] = *wx;
 | 
						|
    x[x_dim1 * 3 + 2] = *wx;
 | 
						|
    x[(x_dim1 << 2) + 2] = -(*wx);
 | 
						|
    x[x_dim1 * 5 + 2] = -(*wx);
 | 
						|
 | 
						|
/*     Form (A, B) */
 | 
						|
 | 
						|
    b[b_dim1 * 3 + 1] = *wx + *wy;
 | 
						|
    b[b_dim1 * 3 + 2] = -(*wx) + *wy;
 | 
						|
    b[(b_dim1 << 2) + 1] = *wx - *wy;
 | 
						|
    b[(b_dim1 << 2) + 2] = *wx - *wy;
 | 
						|
    b[b_dim1 * 5 + 1] = -(*wx) + *wy;
 | 
						|
    b[b_dim1 * 5 + 2] = *wx + *wy;
 | 
						|
    if (*type__ == 1) {
 | 
						|
	a[a_dim1 * 3 + 1] = *wx * a[a_dim1 + 1] + *wy * a[a_dim1 * 3 + 3];
 | 
						|
	a[a_dim1 * 3 + 2] = -(*wx) * a[(a_dim1 << 1) + 2] + *wy * a[a_dim1 * 
 | 
						|
		3 + 3];
 | 
						|
	a[(a_dim1 << 2) + 1] = *wx * a[a_dim1 + 1] - *wy * a[(a_dim1 << 2) + 
 | 
						|
		4];
 | 
						|
	a[(a_dim1 << 2) + 2] = *wx * a[(a_dim1 << 1) + 2] - *wy * a[(a_dim1 <<
 | 
						|
		 2) + 4];
 | 
						|
	a[a_dim1 * 5 + 1] = -(*wx) * a[a_dim1 + 1] + *wy * a[a_dim1 * 5 + 5];
 | 
						|
	a[a_dim1 * 5 + 2] = *wx * a[(a_dim1 << 1) + 2] + *wy * a[a_dim1 * 5 + 
 | 
						|
		5];
 | 
						|
    } else if (*type__ == 2) {
 | 
						|
	a[a_dim1 * 3 + 1] = *wx * 2.f + *wy;
 | 
						|
	a[a_dim1 * 3 + 2] = *wy;
 | 
						|
	a[(a_dim1 << 2) + 1] = -(*wy) * (*alpha + 2.f + *beta);
 | 
						|
	a[(a_dim1 << 2) + 2] = *wx * 2.f - *wy * (*alpha + 2.f + *beta);
 | 
						|
	a[a_dim1 * 5 + 1] = *wx * -2.f + *wy * (*alpha - *beta);
 | 
						|
	a[a_dim1 * 5 + 2] = *wy * (*alpha - *beta);
 | 
						|
	a[a_dim1 + 1] = 1.f;
 | 
						|
	a[(a_dim1 << 1) + 1] = -1.f;
 | 
						|
	a[a_dim1 + 2] = 1.f;
 | 
						|
	a[(a_dim1 << 1) + 2] = a[a_dim1 + 1];
 | 
						|
	a[a_dim1 * 3 + 3] = 1.f;
 | 
						|
	a[(a_dim1 << 2) + 4] = *alpha + 1.f;
 | 
						|
	a[a_dim1 * 5 + 4] = *beta + 1.f;
 | 
						|
	a[(a_dim1 << 2) + 5] = -a[a_dim1 * 5 + 4];
 | 
						|
	a[a_dim1 * 5 + 5] = a[(a_dim1 << 2) + 4];
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute condition numbers */
 | 
						|
 | 
						|
    if (*type__ == 1) {
 | 
						|
 | 
						|
	s[1] = 1.f / sqrt((*wy * 3.f * *wy + 1.f) / (a[a_dim1 + 1] * a[a_dim1 
 | 
						|
		+ 1] + 1.f));
 | 
						|
	s[2] = 1.f / sqrt((*wy * 3.f * *wy + 1.f) / (a[(a_dim1 << 1) + 2] * a[
 | 
						|
		(a_dim1 << 1) + 2] + 1.f));
 | 
						|
	s[3] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / (a[a_dim1 * 3 + 3] * a[
 | 
						|
		a_dim1 * 3 + 3] + 1.f));
 | 
						|
	s[4] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / (a[(a_dim1 << 2) + 4] * a[
 | 
						|
		(a_dim1 << 2) + 4] + 1.f));
 | 
						|
	s[5] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / (a[a_dim1 * 5 + 5] * a[
 | 
						|
		a_dim1 * 5 + 5] + 1.f));
 | 
						|
 | 
						|
	slakf2_(&c__1, &c__4, &a[a_offset], lda, &a[(a_dim1 << 1) + 2], &b[
 | 
						|
		b_offset], &b[(b_dim1 << 1) + 2], z__, &c__12);
 | 
						|
	sgesvd_("N", "N", &c__8, &c__8, z__, &c__12, work, &work[8], &c__1, &
 | 
						|
		work[9], &c__1, &work[10], &c__40, &info);
 | 
						|
	dif[1] = work[7];
 | 
						|
 | 
						|
	slakf2_(&c__4, &c__1, &a[a_offset], lda, &a[a_dim1 * 5 + 5], &b[
 | 
						|
		b_offset], &b[b_dim1 * 5 + 5], z__, &c__12);
 | 
						|
	sgesvd_("N", "N", &c__8, &c__8, z__, &c__12, work, &work[8], &c__1, &
 | 
						|
		work[9], &c__1, &work[10], &c__40, &info);
 | 
						|
	dif[5] = work[7];
 | 
						|
 | 
						|
    } else if (*type__ == 2) {
 | 
						|
 | 
						|
	s[1] = 1.f / sqrt(*wy * *wy + .33333333333333331f);
 | 
						|
	s[2] = s[1];
 | 
						|
	s[3] = 1.f / sqrt(*wx * *wx + .5f);
 | 
						|
	s[4] = 1.f / sqrt((*wx * 2.f * *wx + 1.f) / ((*alpha + 1.f) * (*alpha 
 | 
						|
		+ 1.f) + 1.f + (*beta + 1.f) * (*beta + 1.f)));
 | 
						|
	s[5] = s[4];
 | 
						|
 | 
						|
	slakf2_(&c__2, &c__3, &a[a_offset], lda, &a[a_dim1 * 3 + 3], &b[
 | 
						|
		b_offset], &b[b_dim1 * 3 + 3], z__, &c__12);
 | 
						|
	sgesvd_("N", "N", &c__12, &c__12, z__, &c__12, work, &work[12], &c__1,
 | 
						|
		 &work[13], &c__1, &work[14], &c__60, &info);
 | 
						|
	dif[1] = work[11];
 | 
						|
 | 
						|
	slakf2_(&c__3, &c__2, &a[a_offset], lda, &a[(a_dim1 << 2) + 4], &b[
 | 
						|
		b_offset], &b[(b_dim1 << 2) + 4], z__, &c__12);
 | 
						|
	sgesvd_("N", "N", &c__12, &c__12, z__, &c__12, work, &work[12], &c__1,
 | 
						|
		 &work[13], &c__1, &work[14], &c__60, &info);
 | 
						|
	dif[5] = work[11];
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SLATM6 */
 | 
						|
 | 
						|
} /* slatm6_ */
 | 
						|
 |