591 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			591 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SDRVGT
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
 | 
						|
*                          B, X, XACT, WORK, RWORK, IWORK, NOUT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            TSTERR
 | 
						|
*       INTEGER            NN, NOUT, NRHS
 | 
						|
*       REAL               THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            IWORK( * ), NVAL( * )
 | 
						|
*       REAL               A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
 | 
						|
*      $                   X( * ), XACT( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SDRVGT tests SGTSV and -SVX.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          The matrix types to be used for testing.  Matrices of type j
 | 
						|
*>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | 
						|
*>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NN
 | 
						|
*> \verbatim
 | 
						|
*>          NN is INTEGER
 | 
						|
*>          The number of values of N contained in the vector NVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NVAL is INTEGER array, dimension (NN)
 | 
						|
*>          The values of the matrix dimension N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is REAL
 | 
						|
*>          The threshold value for the test ratios.  A result is
 | 
						|
*>          included in the output file if RESULT >= THRESH.  To have
 | 
						|
*>          every test ratio printed, use THRESH = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TSTERR
 | 
						|
*> \verbatim
 | 
						|
*>          TSTERR is LOGICAL
 | 
						|
*>          Flag that indicates whether error exits are to be tested.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (NMAX*4)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is REAL array, dimension (NMAX*4)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (NMAX*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension (NMAX*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] XACT
 | 
						|
*> \verbatim
 | 
						|
*>          XACT is REAL array, dimension (NMAX*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension
 | 
						|
*>                      (NMAX*max(3,NRHS))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension
 | 
						|
*>                      (max(NMAX,2*NRHS))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (2*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUT is INTEGER
 | 
						|
*>          The unit number for output.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
 | 
						|
     $                   B, X, XACT, WORK, RWORK, IWORK, NOUT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            TSTERR
 | 
						|
      INTEGER            NN, NOUT, NRHS
 | 
						|
      REAL               THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            IWORK( * ), NVAL( * )
 | 
						|
      REAL               A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
 | 
						|
     $                   X( * ), XACT( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
      INTEGER            NTYPES
 | 
						|
      PARAMETER          ( NTYPES = 12 )
 | 
						|
      INTEGER            NTESTS
 | 
						|
      PARAMETER          ( NTESTS = 6 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            TRFCON, ZEROT
 | 
						|
      CHARACTER          DIST, FACT, TRANS, TYPE
 | 
						|
      CHARACTER*3        PATH
 | 
						|
      INTEGER            I, IFACT, IMAT, IN, INFO, ITRAN, IX, IZERO, J,
 | 
						|
     $                   K, K1, KL, KOFF, KU, LDA, M, MODE, N, NERRS,
 | 
						|
     $                   NFAIL, NIMAT, NRUN, NT
 | 
						|
      REAL               AINVNM, ANORM, ANORMI, ANORMO, COND, RCOND,
 | 
						|
     $                   RCONDC, RCONDI, RCONDO
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      CHARACTER          TRANSS( 3 )
 | 
						|
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | 
						|
      REAL               RESULT( NTESTS ), Z( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SASUM, SGET06, SLANGT
 | 
						|
      EXTERNAL           SASUM, SGET06, SLANGT
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ALADHD, ALAERH, ALASVM, SCOPY, SERRVX, SGET04,
 | 
						|
     $                   SGTSV, SGTSVX, SGTT01, SGTT02, SGTT05, SGTTRF,
 | 
						|
     $                   SGTTRS, SLACPY, SLAGTM, SLARNV, SLASET, SLATB4,
 | 
						|
     $                   SLATMS, SSCAL
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      LOGICAL            LERR, OK
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
      INTEGER            INFOT, NUNIT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
 | 
						|
     $                   'C' /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      PATH( 1: 1 ) = 'Single precision'
 | 
						|
      PATH( 2: 3 ) = 'GT'
 | 
						|
      NRUN = 0
 | 
						|
      NFAIL = 0
 | 
						|
      NERRS = 0
 | 
						|
      DO 10 I = 1, 4
 | 
						|
         ISEED( I ) = ISEEDY( I )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Test the error exits
 | 
						|
*
 | 
						|
      IF( TSTERR )
 | 
						|
     $   CALL SERRVX( PATH, NOUT )
 | 
						|
      INFOT = 0
 | 
						|
*
 | 
						|
      DO 140 IN = 1, NN
 | 
						|
*
 | 
						|
*        Do for each value of N in NVAL.
 | 
						|
*
 | 
						|
         N = NVAL( IN )
 | 
						|
         M = MAX( N-1, 0 )
 | 
						|
         LDA = MAX( 1, N )
 | 
						|
         NIMAT = NTYPES
 | 
						|
         IF( N.LE.0 )
 | 
						|
     $      NIMAT = 1
 | 
						|
*
 | 
						|
         DO 130 IMAT = 1, NIMAT
 | 
						|
*
 | 
						|
*           Do the tests only if DOTYPE( IMAT ) is true.
 | 
						|
*
 | 
						|
            IF( .NOT.DOTYPE( IMAT ) )
 | 
						|
     $         GO TO 130
 | 
						|
*
 | 
						|
*           Set up parameters with SLATB4.
 | 
						|
*
 | 
						|
            CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
 | 
						|
     $                   COND, DIST )
 | 
						|
*
 | 
						|
            ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
 | 
						|
            IF( IMAT.LE.6 ) THEN
 | 
						|
*
 | 
						|
*              Types 1-6:  generate matrices of known condition number.
 | 
						|
*
 | 
						|
               KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
 | 
						|
               SRNAMT = 'SLATMS'
 | 
						|
               CALL SLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
 | 
						|
     $                      ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
 | 
						|
     $                      INFO )
 | 
						|
*
 | 
						|
*              Check the error code from SLATMS.
 | 
						|
*
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  CALL ALAERH( PATH, 'SLATMS', INFO, 0, ' ', N, N, KL,
 | 
						|
     $                         KU, -1, IMAT, NFAIL, NERRS, NOUT )
 | 
						|
                  GO TO 130
 | 
						|
               END IF
 | 
						|
               IZERO = 0
 | 
						|
*
 | 
						|
               IF( N.GT.1 ) THEN
 | 
						|
                  CALL SCOPY( N-1, AF( 4 ), 3, A, 1 )
 | 
						|
                  CALL SCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
 | 
						|
               END IF
 | 
						|
               CALL SCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Types 7-12:  generate tridiagonal matrices with
 | 
						|
*              unknown condition numbers.
 | 
						|
*
 | 
						|
               IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
 | 
						|
*
 | 
						|
*                 Generate a matrix with elements from [-1,1].
 | 
						|
*
 | 
						|
                  CALL SLARNV( 2, ISEED, N+2*M, A )
 | 
						|
                  IF( ANORM.NE.ONE )
 | 
						|
     $               CALL SSCAL( N+2*M, ANORM, A, 1 )
 | 
						|
               ELSE IF( IZERO.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                 Reuse the last matrix by copying back the zeroed out
 | 
						|
*                 elements.
 | 
						|
*
 | 
						|
                  IF( IZERO.EQ.1 ) THEN
 | 
						|
                     A( N ) = Z( 2 )
 | 
						|
                     IF( N.GT.1 )
 | 
						|
     $                  A( 1 ) = Z( 3 )
 | 
						|
                  ELSE IF( IZERO.EQ.N ) THEN
 | 
						|
                     A( 3*N-2 ) = Z( 1 )
 | 
						|
                     A( 2*N-1 ) = Z( 2 )
 | 
						|
                  ELSE
 | 
						|
                     A( 2*N-2+IZERO ) = Z( 1 )
 | 
						|
                     A( N-1+IZERO ) = Z( 2 )
 | 
						|
                     A( IZERO ) = Z( 3 )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              If IMAT > 7, set one column of the matrix to 0.
 | 
						|
*
 | 
						|
               IF( .NOT.ZEROT ) THEN
 | 
						|
                  IZERO = 0
 | 
						|
               ELSE IF( IMAT.EQ.8 ) THEN
 | 
						|
                  IZERO = 1
 | 
						|
                  Z( 2 ) = A( N )
 | 
						|
                  A( N ) = ZERO
 | 
						|
                  IF( N.GT.1 ) THEN
 | 
						|
                     Z( 3 ) = A( 1 )
 | 
						|
                     A( 1 ) = ZERO
 | 
						|
                  END IF
 | 
						|
               ELSE IF( IMAT.EQ.9 ) THEN
 | 
						|
                  IZERO = N
 | 
						|
                  Z( 1 ) = A( 3*N-2 )
 | 
						|
                  Z( 2 ) = A( 2*N-1 )
 | 
						|
                  A( 3*N-2 ) = ZERO
 | 
						|
                  A( 2*N-1 ) = ZERO
 | 
						|
               ELSE
 | 
						|
                  IZERO = ( N+1 ) / 2
 | 
						|
                  DO 20 I = IZERO, N - 1
 | 
						|
                     A( 2*N-2+I ) = ZERO
 | 
						|
                     A( N-1+I ) = ZERO
 | 
						|
                     A( I ) = ZERO
 | 
						|
   20             CONTINUE
 | 
						|
                  A( 3*N-2 ) = ZERO
 | 
						|
                  A( 2*N-1 ) = ZERO
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            DO 120 IFACT = 1, 2
 | 
						|
               IF( IFACT.EQ.1 ) THEN
 | 
						|
                  FACT = 'F'
 | 
						|
               ELSE
 | 
						|
                  FACT = 'N'
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Compute the condition number for comparison with
 | 
						|
*              the value returned by SGTSVX.
 | 
						|
*
 | 
						|
               IF( ZEROT ) THEN
 | 
						|
                  IF( IFACT.EQ.1 )
 | 
						|
     $               GO TO 120
 | 
						|
                  RCONDO = ZERO
 | 
						|
                  RCONDI = ZERO
 | 
						|
*
 | 
						|
               ELSE IF( IFACT.EQ.1 ) THEN
 | 
						|
                  CALL SCOPY( N+2*M, A, 1, AF, 1 )
 | 
						|
*
 | 
						|
*                 Compute the 1-norm and infinity-norm of A.
 | 
						|
*
 | 
						|
                  ANORMO = SLANGT( '1', N, A, A( M+1 ), A( N+M+1 ) )
 | 
						|
                  ANORMI = SLANGT( 'I', N, A, A( M+1 ), A( N+M+1 ) )
 | 
						|
*
 | 
						|
*                 Factor the matrix A.
 | 
						|
*
 | 
						|
                  CALL SGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ),
 | 
						|
     $                         AF( N+2*M+1 ), IWORK, INFO )
 | 
						|
*
 | 
						|
*                 Use SGTTRS to solve for one column at a time of
 | 
						|
*                 inv(A), computing the maximum column sum as we go.
 | 
						|
*
 | 
						|
                  AINVNM = ZERO
 | 
						|
                  DO 40 I = 1, N
 | 
						|
                     DO 30 J = 1, N
 | 
						|
                        X( J ) = ZERO
 | 
						|
   30                CONTINUE
 | 
						|
                     X( I ) = ONE
 | 
						|
                     CALL SGTTRS( 'No transpose', N, 1, AF, AF( M+1 ),
 | 
						|
     $                            AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
 | 
						|
     $                            LDA, INFO )
 | 
						|
                     AINVNM = MAX( AINVNM, SASUM( N, X, 1 ) )
 | 
						|
   40             CONTINUE
 | 
						|
*
 | 
						|
*                 Compute the 1-norm condition number of A.
 | 
						|
*
 | 
						|
                  IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | 
						|
                     RCONDO = ONE
 | 
						|
                  ELSE
 | 
						|
                     RCONDO = ( ONE / ANORMO ) / AINVNM
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Use SGTTRS to solve for one column at a time of
 | 
						|
*                 inv(A'), computing the maximum column sum as we go.
 | 
						|
*
 | 
						|
                  AINVNM = ZERO
 | 
						|
                  DO 60 I = 1, N
 | 
						|
                     DO 50 J = 1, N
 | 
						|
                        X( J ) = ZERO
 | 
						|
   50                CONTINUE
 | 
						|
                     X( I ) = ONE
 | 
						|
                     CALL SGTTRS( 'Transpose', N, 1, AF, AF( M+1 ),
 | 
						|
     $                            AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
 | 
						|
     $                            LDA, INFO )
 | 
						|
                     AINVNM = MAX( AINVNM, SASUM( N, X, 1 ) )
 | 
						|
   60             CONTINUE
 | 
						|
*
 | 
						|
*                 Compute the infinity-norm condition number of A.
 | 
						|
*
 | 
						|
                  IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | 
						|
                     RCONDI = ONE
 | 
						|
                  ELSE
 | 
						|
                     RCONDI = ( ONE / ANORMI ) / AINVNM
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               DO 110 ITRAN = 1, 3
 | 
						|
                  TRANS = TRANSS( ITRAN )
 | 
						|
                  IF( ITRAN.EQ.1 ) THEN
 | 
						|
                     RCONDC = RCONDO
 | 
						|
                  ELSE
 | 
						|
                     RCONDC = RCONDI
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Generate NRHS random solution vectors.
 | 
						|
*
 | 
						|
                  IX = 1
 | 
						|
                  DO 70 J = 1, NRHS
 | 
						|
                     CALL SLARNV( 2, ISEED, N, XACT( IX ) )
 | 
						|
                     IX = IX + LDA
 | 
						|
   70             CONTINUE
 | 
						|
*
 | 
						|
*                 Set the right hand side.
 | 
						|
*
 | 
						|
                  CALL SLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
 | 
						|
     $                         A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
 | 
						|
*
 | 
						|
                  IF( IFACT.EQ.2 .AND. ITRAN.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                    --- Test SGTSV  ---
 | 
						|
*
 | 
						|
*                    Solve the system using Gaussian elimination with
 | 
						|
*                    partial pivoting.
 | 
						|
*
 | 
						|
                     CALL SCOPY( N+2*M, A, 1, AF, 1 )
 | 
						|
                     CALL SLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
 | 
						|
*
 | 
						|
                     SRNAMT = 'SGTSV '
 | 
						|
                     CALL SGTSV( N, NRHS, AF, AF( M+1 ), AF( N+M+1 ), X,
 | 
						|
     $                           LDA, INFO )
 | 
						|
*
 | 
						|
*                    Check error code from SGTSV .
 | 
						|
*
 | 
						|
                     IF( INFO.NE.IZERO )
 | 
						|
     $                  CALL ALAERH( PATH, 'SGTSV ', INFO, IZERO, ' ',
 | 
						|
     $                               N, N, 1, 1, NRHS, IMAT, NFAIL,
 | 
						|
     $                               NERRS, NOUT )
 | 
						|
                     NT = 1
 | 
						|
                     IF( IZERO.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*                       Check residual of computed solution.
 | 
						|
*
 | 
						|
                        CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK,
 | 
						|
     $                               LDA )
 | 
						|
                        CALL SGTT02( TRANS, N, NRHS, A, A( M+1 ),
 | 
						|
     $                               A( N+M+1 ), X, LDA, WORK, LDA,
 | 
						|
     $                               RESULT( 2 ) )
 | 
						|
*
 | 
						|
*                       Check solution from generated exact solution.
 | 
						|
*
 | 
						|
                        CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                               RESULT( 3 ) )
 | 
						|
                        NT = 3
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Print information about the tests that did not pass
 | 
						|
*                    the threshold.
 | 
						|
*
 | 
						|
                     DO 80 K = 2, NT
 | 
						|
                        IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                           IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                        CALL ALADHD( NOUT, PATH )
 | 
						|
                           WRITE( NOUT, FMT = 9999 )'SGTSV ', N, IMAT,
 | 
						|
     $                        K, RESULT( K )
 | 
						|
                           NFAIL = NFAIL + 1
 | 
						|
                        END IF
 | 
						|
   80                CONTINUE
 | 
						|
                     NRUN = NRUN + NT - 1
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 --- Test SGTSVX ---
 | 
						|
*
 | 
						|
                  IF( IFACT.GT.1 ) THEN
 | 
						|
*
 | 
						|
*                    Initialize AF to zero.
 | 
						|
*
 | 
						|
                     DO 90 I = 1, 3*N - 2
 | 
						|
                        AF( I ) = ZERO
 | 
						|
   90                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  CALL SLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
 | 
						|
*
 | 
						|
*                 Solve the system and compute the condition number and
 | 
						|
*                 error bounds using SGTSVX.
 | 
						|
*
 | 
						|
                  SRNAMT = 'SGTSVX'
 | 
						|
                  CALL SGTSVX( FACT, TRANS, N, NRHS, A, A( M+1 ),
 | 
						|
     $                         A( N+M+1 ), AF, AF( M+1 ), AF( N+M+1 ),
 | 
						|
     $                         AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
 | 
						|
     $                         RCOND, RWORK, RWORK( NRHS+1 ), WORK,
 | 
						|
     $                         IWORK( N+1 ), INFO )
 | 
						|
*
 | 
						|
*                 Check the error code from SGTSVX.
 | 
						|
*
 | 
						|
                  IF( INFO.NE.IZERO )
 | 
						|
     $               CALL ALAERH( PATH, 'SGTSVX', INFO, IZERO,
 | 
						|
     $                            FACT // TRANS, N, N, 1, 1, NRHS, IMAT,
 | 
						|
     $                            NFAIL, NERRS, NOUT )
 | 
						|
*
 | 
						|
                  IF( IFACT.GE.2 ) THEN
 | 
						|
*
 | 
						|
*                    Reconstruct matrix from factors and compute
 | 
						|
*                    residual.
 | 
						|
*
 | 
						|
                     CALL SGTT01( N, A, A( M+1 ), A( N+M+1 ), AF,
 | 
						|
     $                            AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
 | 
						|
     $                            IWORK, WORK, LDA, RWORK, RESULT( 1 ) )
 | 
						|
                     K1 = 1
 | 
						|
                  ELSE
 | 
						|
                     K1 = 2
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( INFO.EQ.0 ) THEN
 | 
						|
                     TRFCON = .FALSE.
 | 
						|
*
 | 
						|
*                    Check residual of computed solution.
 | 
						|
*
 | 
						|
                     CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | 
						|
                     CALL SGTT02( TRANS, N, NRHS, A, A( M+1 ),
 | 
						|
     $                            A( N+M+1 ), X, LDA, WORK, LDA,
 | 
						|
     $                            RESULT( 2 ) )
 | 
						|
*
 | 
						|
*                    Check solution from generated exact solution.
 | 
						|
*
 | 
						|
                     CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                            RESULT( 3 ) )
 | 
						|
*
 | 
						|
*                    Check the error bounds from iterative refinement.
 | 
						|
*
 | 
						|
                     CALL SGTT05( TRANS, N, NRHS, A, A( M+1 ),
 | 
						|
     $                            A( N+M+1 ), B, LDA, X, LDA, XACT, LDA,
 | 
						|
     $                            RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
 | 
						|
                     NT = 5
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Print information about the tests that did not pass
 | 
						|
*                 the threshold.
 | 
						|
*
 | 
						|
                  DO 100 K = K1, NT
 | 
						|
                     IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                        IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                     CALL ALADHD( NOUT, PATH )
 | 
						|
                        WRITE( NOUT, FMT = 9998 )'SGTSVX', FACT, TRANS,
 | 
						|
     $                     N, IMAT, K, RESULT( K )
 | 
						|
                        NFAIL = NFAIL + 1
 | 
						|
                     END IF
 | 
						|
  100             CONTINUE
 | 
						|
*
 | 
						|
*                 Check the reciprocal of the condition number.
 | 
						|
*
 | 
						|
                  RESULT( 6 ) = SGET06( RCOND, RCONDC )
 | 
						|
                  IF( RESULT( 6 ).GE.THRESH ) THEN
 | 
						|
                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                  CALL ALADHD( NOUT, PATH )
 | 
						|
                     WRITE( NOUT, FMT = 9998 )'SGTSVX', FACT, TRANS, N,
 | 
						|
     $                  IMAT, K, RESULT( K )
 | 
						|
                     NFAIL = NFAIL + 1
 | 
						|
                  END IF
 | 
						|
                  NRUN = NRUN + NT - K1 + 2
 | 
						|
*
 | 
						|
  110          CONTINUE
 | 
						|
  120       CONTINUE
 | 
						|
  130    CONTINUE
 | 
						|
  140 CONTINUE
 | 
						|
*
 | 
						|
*     Print a summary of the results.
 | 
						|
*
 | 
						|
      CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | 
						|
*
 | 
						|
 9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
 | 
						|
     $      ', ratio = ', G12.5 )
 | 
						|
 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N =',
 | 
						|
     $      I5, ', type ', I2, ', test ', I2, ', ratio = ', G12.5 )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SDRVGT
 | 
						|
*
 | 
						|
      END
 |