366 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			366 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLASCL + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlascl.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlascl.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlascl.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TYPE
 | 
						|
*       INTEGER            INFO, KL, KU, LDA, M, N
 | 
						|
*       DOUBLE PRECISION   CFROM, CTO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLASCL multiplies the M by N complex matrix A by the real scalar
 | 
						|
*> CTO/CFROM.  This is done without over/underflow as long as the final
 | 
						|
*> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
 | 
						|
*> A may be full, upper triangular, lower triangular, upper Hessenberg,
 | 
						|
*> or banded.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TYPE
 | 
						|
*> \verbatim
 | 
						|
*>          TYPE is CHARACTER*1
 | 
						|
*>          TYPE indices the storage type of the input matrix.
 | 
						|
*>          = 'G':  A is a full matrix.
 | 
						|
*>          = 'L':  A is a lower triangular matrix.
 | 
						|
*>          = 'U':  A is an upper triangular matrix.
 | 
						|
*>          = 'H':  A is an upper Hessenberg matrix.
 | 
						|
*>          = 'B':  A is a symmetric band matrix with lower bandwidth KL
 | 
						|
*>                  and upper bandwidth KU and with the only the lower
 | 
						|
*>                  half stored.
 | 
						|
*>          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
 | 
						|
*>                  and upper bandwidth KU and with the only the upper
 | 
						|
*>                  half stored.
 | 
						|
*>          = 'Z':  A is a band matrix with lower bandwidth KL and upper
 | 
						|
*>                  bandwidth KU. See ZGBTRF for storage details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>          The lower bandwidth of A.  Referenced only if TYPE = 'B',
 | 
						|
*>          'Q' or 'Z'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>          The upper bandwidth of A.  Referenced only if TYPE = 'B',
 | 
						|
*>          'Q' or 'Z'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CFROM
 | 
						|
*> \verbatim
 | 
						|
*>          CFROM is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CTO
 | 
						|
*> \verbatim
 | 
						|
*>          CTO is DOUBLE PRECISION
 | 
						|
*>
 | 
						|
*>          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
 | 
						|
*>          without over/underflow if the final result CTO*A(I,J)/CFROM
 | 
						|
*>          can be represented without over/underflow.  CFROM must be
 | 
						|
*>          nonzero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
 | 
						|
*>          storage type.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.
 | 
						|
*>          If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M);
 | 
						|
*>             TYPE = 'B', LDA >= KL+1;
 | 
						|
*>             TYPE = 'Q', LDA >= KU+1;
 | 
						|
*>             TYPE = 'Z', LDA >= 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          0  - successful exit
 | 
						|
*>          <0 - if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TYPE
 | 
						|
      INTEGER            INFO, KL, KU, LDA, M, N
 | 
						|
      DOUBLE PRECISION   CFROM, CTO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            DONE
 | 
						|
      INTEGER            I, ITYPE, J, K1, K2, K3, K4
 | 
						|
      DOUBLE PRECISION   BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, DISNAN
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           LSAME, DLAMCH, DISNAN
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( LSAME( TYPE, 'G' ) ) THEN
 | 
						|
         ITYPE = 0
 | 
						|
      ELSE IF( LSAME( TYPE, 'L' ) ) THEN
 | 
						|
         ITYPE = 1
 | 
						|
      ELSE IF( LSAME( TYPE, 'U' ) ) THEN
 | 
						|
         ITYPE = 2
 | 
						|
      ELSE IF( LSAME( TYPE, 'H' ) ) THEN
 | 
						|
         ITYPE = 3
 | 
						|
      ELSE IF( LSAME( TYPE, 'B' ) ) THEN
 | 
						|
         ITYPE = 4
 | 
						|
      ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
 | 
						|
         ITYPE = 5
 | 
						|
      ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
 | 
						|
         ITYPE = 6
 | 
						|
      ELSE
 | 
						|
         ITYPE = -1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.-1 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( DISNAN(CTO) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
 | 
						|
     $         ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( ITYPE.GE.4 ) THEN
 | 
						|
         IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
 | 
						|
            INFO = -2
 | 
						|
         ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
 | 
						|
     $            ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
 | 
						|
     $             THEN
 | 
						|
            INFO = -3
 | 
						|
         ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
 | 
						|
     $            ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
 | 
						|
     $            ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
 | 
						|
            INFO = -9
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZLASCL', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. M.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Get machine parameters
 | 
						|
*
 | 
						|
      SMLNUM = DLAMCH( 'S' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
      CFROMC = CFROM
 | 
						|
      CTOC = CTO
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      CFROM1 = CFROMC*SMLNUM
 | 
						|
      IF( CFROM1.EQ.CFROMC ) THEN
 | 
						|
!        CFROMC is an inf.  Multiply by a correctly signed zero for
 | 
						|
!        finite CTOC, or a NaN if CTOC is infinite.
 | 
						|
         MUL = CTOC / CFROMC
 | 
						|
         DONE = .TRUE.
 | 
						|
         CTO1 = CTOC
 | 
						|
      ELSE
 | 
						|
         CTO1 = CTOC / BIGNUM
 | 
						|
         IF( CTO1.EQ.CTOC ) THEN
 | 
						|
!           CTOC is either 0 or an inf.  In both cases, CTOC itself
 | 
						|
!           serves as the correct multiplication factor.
 | 
						|
            MUL = CTOC
 | 
						|
            DONE = .TRUE.
 | 
						|
            CFROMC = ONE
 | 
						|
         ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
 | 
						|
            MUL = SMLNUM
 | 
						|
            DONE = .FALSE.
 | 
						|
            CFROMC = CFROM1
 | 
						|
         ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
 | 
						|
            MUL = BIGNUM
 | 
						|
            DONE = .FALSE.
 | 
						|
            CTOC = CTO1
 | 
						|
         ELSE
 | 
						|
            MUL = CTOC / CFROMC
 | 
						|
            DONE = .TRUE.
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Full matrix
 | 
						|
*
 | 
						|
         DO 30 J = 1, N
 | 
						|
            DO 20 I = 1, M
 | 
						|
               A( I, J ) = A( I, J )*MUL
 | 
						|
   20       CONTINUE
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
      ELSE IF( ITYPE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*        Lower triangular matrix
 | 
						|
*
 | 
						|
         DO 50 J = 1, N
 | 
						|
            DO 40 I = J, M
 | 
						|
               A( I, J ) = A( I, J )*MUL
 | 
						|
   40       CONTINUE
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
      ELSE IF( ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*        Upper triangular matrix
 | 
						|
*
 | 
						|
         DO 70 J = 1, N
 | 
						|
            DO 60 I = 1, MIN( J, M )
 | 
						|
               A( I, J ) = A( I, J )*MUL
 | 
						|
   60       CONTINUE
 | 
						|
   70    CONTINUE
 | 
						|
*
 | 
						|
      ELSE IF( ITYPE.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*        Upper Hessenberg matrix
 | 
						|
*
 | 
						|
         DO 90 J = 1, N
 | 
						|
            DO 80 I = 1, MIN( J+1, M )
 | 
						|
               A( I, J ) = A( I, J )*MUL
 | 
						|
   80       CONTINUE
 | 
						|
   90    CONTINUE
 | 
						|
*
 | 
						|
      ELSE IF( ITYPE.EQ.4 ) THEN
 | 
						|
*
 | 
						|
*        Lower half of a symmetric band matrix
 | 
						|
*
 | 
						|
         K3 = KL + 1
 | 
						|
         K4 = N + 1
 | 
						|
         DO 110 J = 1, N
 | 
						|
            DO 100 I = 1, MIN( K3, K4-J )
 | 
						|
               A( I, J ) = A( I, J )*MUL
 | 
						|
  100       CONTINUE
 | 
						|
  110    CONTINUE
 | 
						|
*
 | 
						|
      ELSE IF( ITYPE.EQ.5 ) THEN
 | 
						|
*
 | 
						|
*        Upper half of a symmetric band matrix
 | 
						|
*
 | 
						|
         K1 = KU + 2
 | 
						|
         K3 = KU + 1
 | 
						|
         DO 130 J = 1, N
 | 
						|
            DO 120 I = MAX( K1-J, 1 ), K3
 | 
						|
               A( I, J ) = A( I, J )*MUL
 | 
						|
  120       CONTINUE
 | 
						|
  130    CONTINUE
 | 
						|
*
 | 
						|
      ELSE IF( ITYPE.EQ.6 ) THEN
 | 
						|
*
 | 
						|
*        Band matrix
 | 
						|
*
 | 
						|
         K1 = KL + KU + 2
 | 
						|
         K2 = KL + 1
 | 
						|
         K3 = 2*KL + KU + 1
 | 
						|
         K4 = KL + KU + 1 + M
 | 
						|
         DO 150 J = 1, N
 | 
						|
            DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
 | 
						|
               A( I, J ) = A( I, J )*MUL
 | 
						|
  140       CONTINUE
 | 
						|
  150    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( .NOT.DONE )
 | 
						|
     $   GO TO 10
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLASCL
 | 
						|
*
 | 
						|
      END
 |