219 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLAESY computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLAESY + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaesy.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaesy.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaesy.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       COMPLEX*16         A, B, C, CS1, EVSCAL, RT1, RT2, SN1
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix
 | 
						|
*>    ( ( A, B );( B, C ) )
 | 
						|
*> provided the norm of the matrix of eigenvectors is larger than
 | 
						|
*> some threshold value.
 | 
						|
*>
 | 
						|
*> RT1 is the eigenvalue of larger absolute value, and RT2 of
 | 
						|
*> smaller absolute value.  If the eigenvectors are computed, then
 | 
						|
*> on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence
 | 
						|
*>
 | 
						|
*> [  CS1     SN1   ] . [ A  B ] . [ CS1    -SN1   ] = [ RT1  0  ]
 | 
						|
*> [ -SN1     CS1   ]   [ B  C ]   [ SN1     CS1   ]   [  0  RT2 ]
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16
 | 
						|
*>          The ( 1, 1 ) element of input matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16
 | 
						|
*>          The ( 1, 2 ) element of input matrix.  The ( 2, 1 ) element
 | 
						|
*>          is also given by B, since the 2-by-2 matrix is symmetric.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16
 | 
						|
*>          The ( 2, 2 ) element of input matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT1
 | 
						|
*> \verbatim
 | 
						|
*>          RT1 is COMPLEX*16
 | 
						|
*>          The eigenvalue of larger modulus.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT2
 | 
						|
*> \verbatim
 | 
						|
*>          RT2 is COMPLEX*16
 | 
						|
*>          The eigenvalue of smaller modulus.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] EVSCAL
 | 
						|
*> \verbatim
 | 
						|
*>          EVSCAL is COMPLEX*16
 | 
						|
*>          The complex value by which the eigenvector matrix was scaled
 | 
						|
*>          to make it orthonormal.  If EVSCAL is zero, the eigenvectors
 | 
						|
*>          were not computed.  This means one of two things:  the 2-by-2
 | 
						|
*>          matrix could not be diagonalized, or the norm of the matrix
 | 
						|
*>          of eigenvectors before scaling was larger than the threshold
 | 
						|
*>          value THRESH (set below).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] CS1
 | 
						|
*> \verbatim
 | 
						|
*>          CS1 is COMPLEX*16
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SN1
 | 
						|
*> \verbatim
 | 
						|
*>          SN1 is COMPLEX*16
 | 
						|
*>          If EVSCAL .NE. 0,  ( CS1, SN1 ) is the unit right eigenvector
 | 
						|
*>          for RT1.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16SYauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      COMPLEX*16         A, B, C, CS1, EVSCAL, RT1, RT2, SN1
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D0 )
 | 
						|
      DOUBLE PRECISION   ONE
 | 
						|
      PARAMETER          ( ONE = 1.0D0 )
 | 
						|
      COMPLEX*16         CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
 | 
						|
      DOUBLE PRECISION   HALF
 | 
						|
      PARAMETER          ( HALF = 0.5D0 )
 | 
						|
      DOUBLE PRECISION   THRESH
 | 
						|
      PARAMETER          ( THRESH = 0.1D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      DOUBLE PRECISION   BABS, EVNORM, TABS, Z
 | 
						|
      COMPLEX*16         S, T, TMP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*
 | 
						|
*     Special case:  The matrix is actually diagonal.
 | 
						|
*     To avoid divide by zero later, we treat this case separately.
 | 
						|
*
 | 
						|
      IF( ABS( B ).EQ.ZERO ) THEN
 | 
						|
         RT1 = A
 | 
						|
         RT2 = C
 | 
						|
         IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
 | 
						|
            TMP = RT1
 | 
						|
            RT1 = RT2
 | 
						|
            RT2 = TMP
 | 
						|
            CS1 = ZERO
 | 
						|
            SN1 = ONE
 | 
						|
         ELSE
 | 
						|
            CS1 = ONE
 | 
						|
            SN1 = ZERO
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute the eigenvalues and eigenvectors.
 | 
						|
*        The characteristic equation is
 | 
						|
*           lambda **2 - (A+C) lambda + (A*C - B*B)
 | 
						|
*        and we solve it using the quadratic formula.
 | 
						|
*
 | 
						|
         S = ( A+C )*HALF
 | 
						|
         T = ( A-C )*HALF
 | 
						|
*
 | 
						|
*        Take the square root carefully to avoid over/under flow.
 | 
						|
*
 | 
						|
         BABS = ABS( B )
 | 
						|
         TABS = ABS( T )
 | 
						|
         Z = MAX( BABS, TABS )
 | 
						|
         IF( Z.GT.ZERO )
 | 
						|
     $      T = Z*SQRT( ( T / Z )**2+( B / Z )**2 )
 | 
						|
*
 | 
						|
*        Compute the two eigenvalues.  RT1 and RT2 are exchanged
 | 
						|
*        if necessary so that RT1 will have the greater magnitude.
 | 
						|
*
 | 
						|
         RT1 = S + T
 | 
						|
         RT2 = S - T
 | 
						|
         IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
 | 
						|
            TMP = RT1
 | 
						|
            RT1 = RT2
 | 
						|
            RT2 = TMP
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Choose CS1 = 1 and SN1 to satisfy the first equation, then
 | 
						|
*        scale the components of this eigenvector so that the matrix
 | 
						|
*        of eigenvectors X satisfies  X * X**T = I .  (No scaling is
 | 
						|
*        done if the norm of the eigenvalue matrix is less than THRESH.)
 | 
						|
*
 | 
						|
         SN1 = ( RT1-A ) / B
 | 
						|
         TABS = ABS( SN1 )
 | 
						|
         IF( TABS.GT.ONE ) THEN
 | 
						|
            T = TABS*SQRT( ( ONE / TABS )**2+( SN1 / TABS )**2 )
 | 
						|
         ELSE
 | 
						|
            T = SQRT( CONE+SN1*SN1 )
 | 
						|
         END IF
 | 
						|
         EVNORM = ABS( T )
 | 
						|
         IF( EVNORM.GE.THRESH ) THEN
 | 
						|
            EVSCAL = CONE / T
 | 
						|
            CS1 = EVSCAL
 | 
						|
            SN1 = SN1*EVSCAL
 | 
						|
         ELSE
 | 
						|
            EVSCAL = ZERO
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLAESY
 | 
						|
*
 | 
						|
      END
 |