1397 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1397 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b SSYTF2_ROOK computes the factorization of a real symmetric indefinite matrix using the bounded 
 | 
						|
Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm). */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SSYTF2_ROOK + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytf2_
 | 
						|
rook.f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytf2_
 | 
						|
rook.f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytf2_
 | 
						|
rook.f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          UPLO */
 | 
						|
/*       INTEGER            INFO, LDA, N */
 | 
						|
/*       INTEGER            IPIV( * ) */
 | 
						|
/*       REAL               A( LDA, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SSYTF2_ROOK computes the factorization of a real symmetric matrix A */
 | 
						|
/* > using the bounded Bunch-Kaufman ("rook") diagonal pivoting method: */
 | 
						|
/* > */
 | 
						|
/* >    A = U*D*U**T  or  A = L*D*L**T */
 | 
						|
/* > */
 | 
						|
/* > where U (or L) is a product of permutation and unit upper (lower) */
 | 
						|
/* > triangular matrices, U**T is the transpose of U, and D is symmetric and */
 | 
						|
/* > block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
 | 
						|
/* > */
 | 
						|
/* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >          Specifies whether the upper or lower triangular part of the */
 | 
						|
/* >          symmetric matrix A is stored: */
 | 
						|
/* >          = 'U':  Upper triangular */
 | 
						|
/* >          = 'L':  Lower triangular */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is REAL array, dimension (LDA,N) */
 | 
						|
/* >          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 | 
						|
/* >          n-by-n upper triangular part of A contains the upper */
 | 
						|
/* >          triangular part of the matrix A, and the strictly lower */
 | 
						|
/* >          triangular part of A is not referenced.  If UPLO = 'L', the */
 | 
						|
/* >          leading n-by-n lower triangular part of A contains the lower */
 | 
						|
/* >          triangular part of the matrix A, and the strictly upper */
 | 
						|
/* >          triangular part of A is not referenced. */
 | 
						|
/* > */
 | 
						|
/* >          On exit, the block diagonal matrix D and the multipliers used */
 | 
						|
/* >          to obtain the factor U or L (see below for further details). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IPIV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IPIV is INTEGER array, dimension (N) */
 | 
						|
/* >          Details of the interchanges and the block structure of D. */
 | 
						|
/* > */
 | 
						|
/* >          If UPLO = 'U': */
 | 
						|
/* >             If IPIV(k) > 0, then rows and columns k and IPIV(k) */
 | 
						|
/* >             were interchanged and D(k,k) is a 1-by-1 diagonal block. */
 | 
						|
/* > */
 | 
						|
/* >             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
 | 
						|
/* >             columns k and -IPIV(k) were interchanged and rows and */
 | 
						|
/* >             columns k-1 and -IPIV(k-1) were inerchaged, */
 | 
						|
/* >             D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
 | 
						|
/* > */
 | 
						|
/* >          If UPLO = 'L': */
 | 
						|
/* >             If IPIV(k) > 0, then rows and columns k and IPIV(k) */
 | 
						|
/* >             were interchanged and D(k,k) is a 1-by-1 diagonal block. */
 | 
						|
/* > */
 | 
						|
/* >             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
 | 
						|
/* >             columns k and -IPIV(k) were interchanged and rows and */
 | 
						|
/* >             columns k+1 and -IPIV(k+1) were inerchaged, */
 | 
						|
/* >             D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0: successful exit */
 | 
						|
/* >          < 0: if INFO = -k, the k-th argument had an illegal value */
 | 
						|
/* >          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization */
 | 
						|
/* >               has been completed, but the block diagonal matrix D is */
 | 
						|
/* >               exactly singular, and division by zero will occur if it */
 | 
						|
/* >               is used to solve a system of equations. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date November 2013 */
 | 
						|
 | 
						|
/* > \ingroup realSYcomputational */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  If UPLO = 'U', then A = U*D*U**T, where */
 | 
						|
/* >     U = P(n)*U(n)* ... *P(k)U(k)* ..., */
 | 
						|
/* >  i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
 | 
						|
/* >  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
 | 
						|
/* >  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
 | 
						|
/* >  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
 | 
						|
/* >  that if the diagonal block D(k) is of order s (s = 1 or 2), then */
 | 
						|
/* > */
 | 
						|
/* >             (   I    v    0   )   k-s */
 | 
						|
/* >     U(k) =  (   0    I    0   )   s */
 | 
						|
/* >             (   0    0    I   )   n-k */
 | 
						|
/* >                k-s   s   n-k */
 | 
						|
/* > */
 | 
						|
/* >  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
 | 
						|
/* >  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
 | 
						|
/* >  and A(k,k), and v overwrites A(1:k-2,k-1:k). */
 | 
						|
/* > */
 | 
						|
/* >  If UPLO = 'L', then A = L*D*L**T, where */
 | 
						|
/* >     L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
 | 
						|
/* >  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
 | 
						|
/* >  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
 | 
						|
/* >  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
 | 
						|
/* >  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
 | 
						|
/* >  that if the diagonal block D(k) is of order s (s = 1 or 2), then */
 | 
						|
/* > */
 | 
						|
/* >             (   I    0     0   )  k-1 */
 | 
						|
/* >     L(k) =  (   0    I     0   )  s */
 | 
						|
/* >             (   0    v     I   )  n-k-s+1 */
 | 
						|
/* >                k-1   s  n-k-s+1 */
 | 
						|
/* > */
 | 
						|
/* >  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
 | 
						|
/* >  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
 | 
						|
/* >  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/* > \par Contributors: */
 | 
						|
/*  ================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  November 2013,     Igor Kozachenko, */
 | 
						|
/* >                  Computer Science Division, */
 | 
						|
/* >                  University of California, Berkeley */
 | 
						|
/* > */
 | 
						|
/* >  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
 | 
						|
/* >                  School of Mathematics, */
 | 
						|
/* >                  University of Manchester */
 | 
						|
/* > */
 | 
						|
/* >  01-01-96 - Based on modifications by */
 | 
						|
/* >    J. Lewis, Boeing Computer Services Company */
 | 
						|
/* >    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville abd , USA */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int ssytf2_rook_(char *uplo, integer *n, real *a, integer *
 | 
						|
	lda, integer *ipiv, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2;
 | 
						|
    real r__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    logical done;
 | 
						|
    integer imax, jmax;
 | 
						|
    extern /* Subroutine */ int ssyr_(char *, integer *, real *, real *, 
 | 
						|
	    integer *, real *, integer *);
 | 
						|
    integer i__, j, k, p;
 | 
						|
    real t, alpha;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
 | 
						|
    real sfmin;
 | 
						|
    integer itemp, kstep;
 | 
						|
    real stemp;
 | 
						|
    logical upper;
 | 
						|
    extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *);
 | 
						|
    real d11, d12, d21, d22;
 | 
						|
    integer ii, kk, kp;
 | 
						|
    real absakk, wk;
 | 
						|
    extern real slamch_(char *);
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern integer isamax_(integer *, real *, integer *);
 | 
						|
    real colmax, rowmax, wkm1, wkp1;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.5.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     November 2013 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --ipiv;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    upper = lsame_(uplo, "U");
 | 
						|
    if (! upper && ! lsame_(uplo, "L")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -4;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SSYTF2_ROOK", &i__1, (ftnlen)11);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Initialize ALPHA for use in choosing pivot block size. */
 | 
						|
 | 
						|
    alpha = (sqrt(17.f) + 1.f) / 8.f;
 | 
						|
 | 
						|
/*     Compute machine safe minimum */
 | 
						|
 | 
						|
    sfmin = slamch_("S");
 | 
						|
 | 
						|
    if (upper) {
 | 
						|
 | 
						|
/*        Factorize A as U*D*U**T using the upper triangle of A */
 | 
						|
 | 
						|
/*        K is the main loop index, decreasing from N to 1 in steps of */
 | 
						|
/*        1 or 2 */
 | 
						|
 | 
						|
	k = *n;
 | 
						|
L10:
 | 
						|
 | 
						|
/*        If K < 1, exit from loop */
 | 
						|
 | 
						|
	if (k < 1) {
 | 
						|
	    goto L70;
 | 
						|
	}
 | 
						|
	kstep = 1;
 | 
						|
	p = k;
 | 
						|
 | 
						|
/*        Determine rows and columns to be interchanged and whether */
 | 
						|
/*        a 1-by-1 or 2-by-2 pivot block will be used */
 | 
						|
 | 
						|
	absakk = (r__1 = a[k + k * a_dim1], abs(r__1));
 | 
						|
 | 
						|
/*        IMAX is the row-index of the largest off-diagonal element in */
 | 
						|
/*        column K, and COLMAX is its absolute value. */
 | 
						|
/*        Determine both COLMAX and IMAX. */
 | 
						|
 | 
						|
	if (k > 1) {
 | 
						|
	    i__1 = k - 1;
 | 
						|
	    imax = isamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
 | 
						|
	    colmax = (r__1 = a[imax + k * a_dim1], abs(r__1));
 | 
						|
	} else {
 | 
						|
	    colmax = 0.f;
 | 
						|
	}
 | 
						|
 | 
						|
	if (f2cmax(absakk,colmax) == 0.f) {
 | 
						|
 | 
						|
/*           Column K is zero or underflow: set INFO and continue */
 | 
						|
 | 
						|
	    if (*info == 0) {
 | 
						|
		*info = k;
 | 
						|
	    }
 | 
						|
	    kp = k;
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Test for interchange */
 | 
						|
 | 
						|
/*           Equivalent to testing for (used to handle NaN and Inf) */
 | 
						|
/*           ABSAKK.GE.ALPHA*COLMAX */
 | 
						|
 | 
						|
	    if (! (absakk < alpha * colmax)) {
 | 
						|
 | 
						|
/*              no interchange, */
 | 
						|
/*              use 1-by-1 pivot block */
 | 
						|
 | 
						|
		kp = k;
 | 
						|
	    } else {
 | 
						|
 | 
						|
		done = FALSE_;
 | 
						|
 | 
						|
/*              Loop until pivot found */
 | 
						|
 | 
						|
L12:
 | 
						|
 | 
						|
/*                 Begin pivot search loop body */
 | 
						|
 | 
						|
/*                 JMAX is the column-index of the largest off-diagonal */
 | 
						|
/*                 element in row IMAX, and ROWMAX is its absolute value. */
 | 
						|
/*                 Determine both ROWMAX and JMAX. */
 | 
						|
 | 
						|
		if (imax != k) {
 | 
						|
		    i__1 = k - imax;
 | 
						|
		    jmax = imax + isamax_(&i__1, &a[imax + (imax + 1) * 
 | 
						|
			    a_dim1], lda);
 | 
						|
		    rowmax = (r__1 = a[imax + jmax * a_dim1], abs(r__1));
 | 
						|
		} else {
 | 
						|
		    rowmax = 0.f;
 | 
						|
		}
 | 
						|
 | 
						|
		if (imax > 1) {
 | 
						|
		    i__1 = imax - 1;
 | 
						|
		    itemp = isamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
 | 
						|
		    stemp = (r__1 = a[itemp + imax * a_dim1], abs(r__1));
 | 
						|
		    if (stemp > rowmax) {
 | 
						|
			rowmax = stemp;
 | 
						|
			jmax = itemp;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
/*                 Equivalent to testing for (used to handle NaN and Inf) */
 | 
						|
/*                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
 | 
						|
 | 
						|
		if (! ((r__1 = a[imax + imax * a_dim1], abs(r__1)) < alpha * 
 | 
						|
			rowmax)) {
 | 
						|
 | 
						|
/*                    interchange rows and columns K and IMAX, */
 | 
						|
/*                    use 1-by-1 pivot block */
 | 
						|
 | 
						|
		    kp = imax;
 | 
						|
		    done = TRUE_;
 | 
						|
 | 
						|
/*                 Equivalent to testing for ROWMAX .EQ. COLMAX, */
 | 
						|
/*                 used to handle NaN and Inf */
 | 
						|
 | 
						|
		} else if (p == jmax || rowmax <= colmax) {
 | 
						|
 | 
						|
/*                    interchange rows and columns K+1 and IMAX, */
 | 
						|
/*                    use 2-by-2 pivot block */
 | 
						|
 | 
						|
		    kp = imax;
 | 
						|
		    kstep = 2;
 | 
						|
		    done = TRUE_;
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                    Pivot NOT found, set variables and repeat */
 | 
						|
 | 
						|
		    p = imax;
 | 
						|
		    colmax = rowmax;
 | 
						|
		    imax = jmax;
 | 
						|
		}
 | 
						|
 | 
						|
/*                 End pivot search loop body */
 | 
						|
 | 
						|
		if (! done) {
 | 
						|
		    goto L12;
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Swap TWO rows and TWO columns */
 | 
						|
 | 
						|
/*           First swap */
 | 
						|
 | 
						|
	    if (kstep == 2 && p != k) {
 | 
						|
 | 
						|
/*              Interchange rows and column K and P in the leading */
 | 
						|
/*              submatrix A(1:k,1:k) if we have a 2-by-2 pivot */
 | 
						|
 | 
						|
		if (p > 1) {
 | 
						|
		    i__1 = p - 1;
 | 
						|
		    sswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 + 
 | 
						|
			    1], &c__1);
 | 
						|
		}
 | 
						|
		if (p < k - 1) {
 | 
						|
		    i__1 = k - p - 1;
 | 
						|
		    sswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 
 | 
						|
			    1) * a_dim1], lda);
 | 
						|
		}
 | 
						|
		t = a[k + k * a_dim1];
 | 
						|
		a[k + k * a_dim1] = a[p + p * a_dim1];
 | 
						|
		a[p + p * a_dim1] = t;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Second swap */
 | 
						|
 | 
						|
	    kk = k - kstep + 1;
 | 
						|
	    if (kp != kk) {
 | 
						|
 | 
						|
/*              Interchange rows and columns KK and KP in the leading */
 | 
						|
/*              submatrix A(1:k,1:k) */
 | 
						|
 | 
						|
		if (kp > 1) {
 | 
						|
		    i__1 = kp - 1;
 | 
						|
		    sswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 
 | 
						|
			    + 1], &c__1);
 | 
						|
		}
 | 
						|
		if (kk > 1 && kp < kk - 1) {
 | 
						|
		    i__1 = kk - kp - 1;
 | 
						|
		    sswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (
 | 
						|
			    kp + 1) * a_dim1], lda);
 | 
						|
		}
 | 
						|
		t = a[kk + kk * a_dim1];
 | 
						|
		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
 | 
						|
		a[kp + kp * a_dim1] = t;
 | 
						|
		if (kstep == 2) {
 | 
						|
		    t = a[k - 1 + k * a_dim1];
 | 
						|
		    a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
 | 
						|
		    a[kp + k * a_dim1] = t;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Update the leading submatrix */
 | 
						|
 | 
						|
	    if (kstep == 1) {
 | 
						|
 | 
						|
/*              1-by-1 pivot block D(k): column k now holds */
 | 
						|
 | 
						|
/*              W(k) = U(k)*D(k) */
 | 
						|
 | 
						|
/*              where U(k) is the k-th column of U */
 | 
						|
 | 
						|
		if (k > 1) {
 | 
						|
 | 
						|
/*                 Perform a rank-1 update of A(1:k-1,1:k-1) and */
 | 
						|
/*                 store U(k) in column k */
 | 
						|
 | 
						|
		    if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
 | 
						|
 | 
						|
/*                    Perform a rank-1 update of A(1:k-1,1:k-1) as */
 | 
						|
/*                    A := A - U(k)*D(k)*U(k)**T */
 | 
						|
/*                       = A - W(k)*1/D(k)*W(k)**T */
 | 
						|
 | 
						|
			d11 = 1.f / a[k + k * a_dim1];
 | 
						|
			i__1 = k - 1;
 | 
						|
			r__1 = -d11;
 | 
						|
			ssyr_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
 | 
						|
				a[a_offset], lda);
 | 
						|
 | 
						|
/*                    Store U(k) in column k */
 | 
						|
 | 
						|
			i__1 = k - 1;
 | 
						|
			sscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
 | 
						|
		    } else {
 | 
						|
 | 
						|
/*                    Store L(k) in column K */
 | 
						|
 | 
						|
			d11 = a[k + k * a_dim1];
 | 
						|
			i__1 = k - 1;
 | 
						|
			for (ii = 1; ii <= i__1; ++ii) {
 | 
						|
			    a[ii + k * a_dim1] /= d11;
 | 
						|
/* L16: */
 | 
						|
			}
 | 
						|
 | 
						|
/*                    Perform a rank-1 update of A(k+1:n,k+1:n) as */
 | 
						|
/*                    A := A - U(k)*D(k)*U(k)**T */
 | 
						|
/*                       = A - W(k)*(1/D(k))*W(k)**T */
 | 
						|
/*                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
 | 
						|
 | 
						|
			i__1 = k - 1;
 | 
						|
			r__1 = -d11;
 | 
						|
			ssyr_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
 | 
						|
				a[a_offset], lda);
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              2-by-2 pivot block D(k): columns k and k-1 now hold */
 | 
						|
 | 
						|
/*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
 | 
						|
 | 
						|
/*              where U(k) and U(k-1) are the k-th and (k-1)-th columns */
 | 
						|
/*              of U */
 | 
						|
 | 
						|
/*              Perform a rank-2 update of A(1:k-2,1:k-2) as */
 | 
						|
 | 
						|
/*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
 | 
						|
/*                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
 | 
						|
 | 
						|
/*              and store L(k) and L(k+1) in columns k and k+1 */
 | 
						|
 | 
						|
		if (k > 2) {
 | 
						|
 | 
						|
		    d12 = a[k - 1 + k * a_dim1];
 | 
						|
		    d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
 | 
						|
		    d11 = a[k + k * a_dim1] / d12;
 | 
						|
		    t = 1.f / (d11 * d22 - 1.f);
 | 
						|
 | 
						|
		    for (j = k - 2; j >= 1; --j) {
 | 
						|
 | 
						|
			wkm1 = t * (d11 * a[j + (k - 1) * a_dim1] - a[j + k * 
 | 
						|
				a_dim1]);
 | 
						|
			wk = t * (d22 * a[j + k * a_dim1] - a[j + (k - 1) * 
 | 
						|
				a_dim1]);
 | 
						|
 | 
						|
			for (i__ = j; i__ >= 1; --i__) {
 | 
						|
			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
 | 
						|
				    + k * a_dim1] / d12 * wk - a[i__ + (k - 1)
 | 
						|
				     * a_dim1] / d12 * wkm1;
 | 
						|
/* L20: */
 | 
						|
			}
 | 
						|
 | 
						|
/*                    Store U(k) and U(k-1) in cols k and k-1 for row J */
 | 
						|
 | 
						|
			a[j + k * a_dim1] = wk / d12;
 | 
						|
			a[j + (k - 1) * a_dim1] = wkm1 / d12;
 | 
						|
 | 
						|
/* L30: */
 | 
						|
		    }
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Store details of the interchanges in IPIV */
 | 
						|
 | 
						|
	if (kstep == 1) {
 | 
						|
	    ipiv[k] = kp;
 | 
						|
	} else {
 | 
						|
	    ipiv[k] = -p;
 | 
						|
	    ipiv[k - 1] = -kp;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Decrease K and return to the start of the main loop */
 | 
						|
 | 
						|
	k -= kstep;
 | 
						|
	goto L10;
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Factorize A as L*D*L**T using the lower triangle of A */
 | 
						|
 | 
						|
/*        K is the main loop index, increasing from 1 to N in steps of */
 | 
						|
/*        1 or 2 */
 | 
						|
 | 
						|
	k = 1;
 | 
						|
L40:
 | 
						|
 | 
						|
/*        If K > N, exit from loop */
 | 
						|
 | 
						|
	if (k > *n) {
 | 
						|
	    goto L70;
 | 
						|
	}
 | 
						|
	kstep = 1;
 | 
						|
	p = k;
 | 
						|
 | 
						|
/*        Determine rows and columns to be interchanged and whether */
 | 
						|
/*        a 1-by-1 or 2-by-2 pivot block will be used */
 | 
						|
 | 
						|
	absakk = (r__1 = a[k + k * a_dim1], abs(r__1));
 | 
						|
 | 
						|
/*        IMAX is the row-index of the largest off-diagonal element in */
 | 
						|
/*        column K, and COLMAX is its absolute value. */
 | 
						|
/*        Determine both COLMAX and IMAX. */
 | 
						|
 | 
						|
	if (k < *n) {
 | 
						|
	    i__1 = *n - k;
 | 
						|
	    imax = k + isamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
 | 
						|
	    colmax = (r__1 = a[imax + k * a_dim1], abs(r__1));
 | 
						|
	} else {
 | 
						|
	    colmax = 0.f;
 | 
						|
	}
 | 
						|
 | 
						|
	if (f2cmax(absakk,colmax) == 0.f) {
 | 
						|
 | 
						|
/*           Column K is zero or underflow: set INFO and continue */
 | 
						|
 | 
						|
	    if (*info == 0) {
 | 
						|
		*info = k;
 | 
						|
	    }
 | 
						|
	    kp = k;
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Test for interchange */
 | 
						|
 | 
						|
/*           Equivalent to testing for (used to handle NaN and Inf) */
 | 
						|
/*           ABSAKK.GE.ALPHA*COLMAX */
 | 
						|
 | 
						|
	    if (! (absakk < alpha * colmax)) {
 | 
						|
 | 
						|
/*              no interchange, use 1-by-1 pivot block */
 | 
						|
 | 
						|
		kp = k;
 | 
						|
	    } else {
 | 
						|
 | 
						|
		done = FALSE_;
 | 
						|
 | 
						|
/*              Loop until pivot found */
 | 
						|
 | 
						|
L42:
 | 
						|
 | 
						|
/*                 Begin pivot search loop body */
 | 
						|
 | 
						|
/*                 JMAX is the column-index of the largest off-diagonal */
 | 
						|
/*                 element in row IMAX, and ROWMAX is its absolute value. */
 | 
						|
/*                 Determine both ROWMAX and JMAX. */
 | 
						|
 | 
						|
		if (imax != k) {
 | 
						|
		    i__1 = imax - k;
 | 
						|
		    jmax = k - 1 + isamax_(&i__1, &a[imax + k * a_dim1], lda);
 | 
						|
		    rowmax = (r__1 = a[imax + jmax * a_dim1], abs(r__1));
 | 
						|
		} else {
 | 
						|
		    rowmax = 0.f;
 | 
						|
		}
 | 
						|
 | 
						|
		if (imax < *n) {
 | 
						|
		    i__1 = *n - imax;
 | 
						|
		    itemp = imax + isamax_(&i__1, &a[imax + 1 + imax * a_dim1]
 | 
						|
			    , &c__1);
 | 
						|
		    stemp = (r__1 = a[itemp + imax * a_dim1], abs(r__1));
 | 
						|
		    if (stemp > rowmax) {
 | 
						|
			rowmax = stemp;
 | 
						|
			jmax = itemp;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
/*                 Equivalent to testing for (used to handle NaN and Inf) */
 | 
						|
/*                 ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
 | 
						|
 | 
						|
		if (! ((r__1 = a[imax + imax * a_dim1], abs(r__1)) < alpha * 
 | 
						|
			rowmax)) {
 | 
						|
 | 
						|
/*                    interchange rows and columns K and IMAX, */
 | 
						|
/*                    use 1-by-1 pivot block */
 | 
						|
 | 
						|
		    kp = imax;
 | 
						|
		    done = TRUE_;
 | 
						|
 | 
						|
/*                 Equivalent to testing for ROWMAX .EQ. COLMAX, */
 | 
						|
/*                 used to handle NaN and Inf */
 | 
						|
 | 
						|
		} else if (p == jmax || rowmax <= colmax) {
 | 
						|
 | 
						|
/*                    interchange rows and columns K+1 and IMAX, */
 | 
						|
/*                    use 2-by-2 pivot block */
 | 
						|
 | 
						|
		    kp = imax;
 | 
						|
		    kstep = 2;
 | 
						|
		    done = TRUE_;
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                    Pivot NOT found, set variables and repeat */
 | 
						|
 | 
						|
		    p = imax;
 | 
						|
		    colmax = rowmax;
 | 
						|
		    imax = jmax;
 | 
						|
		}
 | 
						|
 | 
						|
/*                 End pivot search loop body */
 | 
						|
 | 
						|
		if (! done) {
 | 
						|
		    goto L42;
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Swap TWO rows and TWO columns */
 | 
						|
 | 
						|
/*           First swap */
 | 
						|
 | 
						|
	    if (kstep == 2 && p != k) {
 | 
						|
 | 
						|
/*              Interchange rows and column K and P in the trailing */
 | 
						|
/*              submatrix A(k:n,k:n) if we have a 2-by-2 pivot */
 | 
						|
 | 
						|
		if (p < *n) {
 | 
						|
		    i__1 = *n - p;
 | 
						|
		    sswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p 
 | 
						|
			    * a_dim1], &c__1);
 | 
						|
		}
 | 
						|
		if (p > k + 1) {
 | 
						|
		    i__1 = p - k - 1;
 | 
						|
		    sswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k + 
 | 
						|
			    1) * a_dim1], lda);
 | 
						|
		}
 | 
						|
		t = a[k + k * a_dim1];
 | 
						|
		a[k + k * a_dim1] = a[p + p * a_dim1];
 | 
						|
		a[p + p * a_dim1] = t;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Second swap */
 | 
						|
 | 
						|
	    kk = k + kstep - 1;
 | 
						|
	    if (kp != kk) {
 | 
						|
 | 
						|
/*              Interchange rows and columns KK and KP in the trailing */
 | 
						|
/*              submatrix A(k:n,k:n) */
 | 
						|
 | 
						|
		if (kp < *n) {
 | 
						|
		    i__1 = *n - kp;
 | 
						|
		    sswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1 
 | 
						|
			    + kp * a_dim1], &c__1);
 | 
						|
		}
 | 
						|
		if (kk < *n && kp > kk + 1) {
 | 
						|
		    i__1 = kp - kk - 1;
 | 
						|
		    sswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (
 | 
						|
			    kk + 1) * a_dim1], lda);
 | 
						|
		}
 | 
						|
		t = a[kk + kk * a_dim1];
 | 
						|
		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
 | 
						|
		a[kp + kp * a_dim1] = t;
 | 
						|
		if (kstep == 2) {
 | 
						|
		    t = a[k + 1 + k * a_dim1];
 | 
						|
		    a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
 | 
						|
		    a[kp + k * a_dim1] = t;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Update the trailing submatrix */
 | 
						|
 | 
						|
	    if (kstep == 1) {
 | 
						|
 | 
						|
/*              1-by-1 pivot block D(k): column k now holds */
 | 
						|
 | 
						|
/*              W(k) = L(k)*D(k) */
 | 
						|
 | 
						|
/*              where L(k) is the k-th column of L */
 | 
						|
 | 
						|
		if (k < *n) {
 | 
						|
 | 
						|
/*              Perform a rank-1 update of A(k+1:n,k+1:n) and */
 | 
						|
/*              store L(k) in column k */
 | 
						|
 | 
						|
		    if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
 | 
						|
 | 
						|
/*                    Perform a rank-1 update of A(k+1:n,k+1:n) as */
 | 
						|
/*                    A := A - L(k)*D(k)*L(k)**T */
 | 
						|
/*                       = A - W(k)*(1/D(k))*W(k)**T */
 | 
						|
 | 
						|
			d11 = 1.f / a[k + k * a_dim1];
 | 
						|
			i__1 = *n - k;
 | 
						|
			r__1 = -d11;
 | 
						|
			ssyr_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
 | 
						|
				c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
 | 
						|
 | 
						|
/*                    Store L(k) in column k */
 | 
						|
 | 
						|
			i__1 = *n - k;
 | 
						|
			sscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
 | 
						|
		    } else {
 | 
						|
 | 
						|
/*                    Store L(k) in column k */
 | 
						|
 | 
						|
			d11 = a[k + k * a_dim1];
 | 
						|
			i__1 = *n;
 | 
						|
			for (ii = k + 1; ii <= i__1; ++ii) {
 | 
						|
			    a[ii + k * a_dim1] /= d11;
 | 
						|
/* L46: */
 | 
						|
			}
 | 
						|
 | 
						|
/*                    Perform a rank-1 update of A(k+1:n,k+1:n) as */
 | 
						|
/*                    A := A - L(k)*D(k)*L(k)**T */
 | 
						|
/*                       = A - W(k)*(1/D(k))*W(k)**T */
 | 
						|
/*                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
 | 
						|
 | 
						|
			i__1 = *n - k;
 | 
						|
			r__1 = -d11;
 | 
						|
			ssyr_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
 | 
						|
				c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              2-by-2 pivot block D(k): columns k and k+1 now hold */
 | 
						|
 | 
						|
/*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
 | 
						|
 | 
						|
/*              where L(k) and L(k+1) are the k-th and (k+1)-th columns */
 | 
						|
/*              of L */
 | 
						|
 | 
						|
 | 
						|
/*              Perform a rank-2 update of A(k+2:n,k+2:n) as */
 | 
						|
 | 
						|
/*              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
 | 
						|
/*                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
 | 
						|
 | 
						|
/*              and store L(k) and L(k+1) in columns k and k+1 */
 | 
						|
 | 
						|
		if (k < *n - 1) {
 | 
						|
 | 
						|
		    d21 = a[k + 1 + k * a_dim1];
 | 
						|
		    d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
 | 
						|
		    d22 = a[k + k * a_dim1] / d21;
 | 
						|
		    t = 1.f / (d11 * d22 - 1.f);
 | 
						|
 | 
						|
		    i__1 = *n;
 | 
						|
		    for (j = k + 2; j <= i__1; ++j) {
 | 
						|
 | 
						|
/*                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
 | 
						|
 | 
						|
			wk = t * (d11 * a[j + k * a_dim1] - a[j + (k + 1) * 
 | 
						|
				a_dim1]);
 | 
						|
			wkp1 = t * (d22 * a[j + (k + 1) * a_dim1] - a[j + k * 
 | 
						|
				a_dim1]);
 | 
						|
 | 
						|
/*                    Perform a rank-2 update of A(k+2:n,k+2:n) */
 | 
						|
 | 
						|
			i__2 = *n;
 | 
						|
			for (i__ = j; i__ <= i__2; ++i__) {
 | 
						|
			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
 | 
						|
				    + k * a_dim1] / d21 * wk - a[i__ + (k + 1)
 | 
						|
				     * a_dim1] / d21 * wkp1;
 | 
						|
/* L50: */
 | 
						|
			}
 | 
						|
 | 
						|
/*                    Store L(k) and L(k+1) in cols k and k+1 for row J */
 | 
						|
 | 
						|
			a[j + k * a_dim1] = wk / d21;
 | 
						|
			a[j + (k + 1) * a_dim1] = wkp1 / d21;
 | 
						|
 | 
						|
/* L60: */
 | 
						|
		    }
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Store details of the interchanges in IPIV */
 | 
						|
 | 
						|
	if (kstep == 1) {
 | 
						|
	    ipiv[k] = kp;
 | 
						|
	} else {
 | 
						|
	    ipiv[k] = -p;
 | 
						|
	    ipiv[k + 1] = -kp;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Increase K and return to the start of the main loop */
 | 
						|
 | 
						|
	k += kstep;
 | 
						|
	goto L40;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
L70:
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SSYTF2_ROOK */
 | 
						|
 | 
						|
} /* ssytf2_rook__ */
 | 
						|
 |