312 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SSYGV
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSYGV + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygv.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygv.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygv.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 | 
						|
*                         LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, UPLO
 | 
						|
*       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSYGV computes all the eigenvalues, and optionally, the eigenvectors
 | 
						|
*> of a real generalized symmetric-definite eigenproblem, of the form
 | 
						|
*> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 | 
						|
*> Here A and B are assumed to be symmetric and B is also
 | 
						|
*> positive definite.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITYPE
 | 
						|
*> \verbatim
 | 
						|
*>          ITYPE is INTEGER
 | 
						|
*>          Specifies the problem type to be solved:
 | 
						|
*>          = 1:  A*x = (lambda)*B*x
 | 
						|
*>          = 2:  A*B*x = (lambda)*x
 | 
						|
*>          = 3:  B*A*x = (lambda)*x
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangles of A and B are stored;
 | 
						|
*>          = 'L':  Lower triangles of A and B are stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA, N)
 | 
						|
*>          On entry, the symmetric matrix A.  If UPLO = 'U', the
 | 
						|
*>          leading N-by-N upper triangular part of A contains the
 | 
						|
*>          upper triangular part of the matrix A.  If UPLO = 'L',
 | 
						|
*>          the leading N-by-N lower triangular part of A contains
 | 
						|
*>          the lower triangular part of the matrix A.
 | 
						|
*>
 | 
						|
*>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
 | 
						|
*>          matrix Z of eigenvectors.  The eigenvectors are normalized
 | 
						|
*>          as follows:
 | 
						|
*>          if ITYPE = 1 or 2, Z**T*B*Z = I;
 | 
						|
*>          if ITYPE = 3, Z**T*inv(B)*Z = I.
 | 
						|
*>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
 | 
						|
*>          or the lower triangle (if UPLO='L') of A, including the
 | 
						|
*>          diagonal, is destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB, N)
 | 
						|
*>          On entry, the symmetric positive definite matrix B.
 | 
						|
*>          If UPLO = 'U', the leading N-by-N upper triangular part of B
 | 
						|
*>          contains the upper triangular part of the matrix B.
 | 
						|
*>          If UPLO = 'L', the leading N-by-N lower triangular part of B
 | 
						|
*>          contains the lower triangular part of the matrix B.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO <= N, the part of B containing the matrix is
 | 
						|
*>          overwritten by the triangular factor U or L from the Cholesky
 | 
						|
*>          factorization B = U**T*U or B = L*L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is REAL array, dimension (N)
 | 
						|
*>          If INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The length of the array WORK.  LWORK >= max(1,3*N-1).
 | 
						|
*>          For optimal efficiency, LWORK >= (NB+2)*N,
 | 
						|
*>          where NB is the blocksize for SSYTRD returned by ILAENV.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  SPOTRF or SSYEV returned an error code:
 | 
						|
*>             <= N:  if INFO = i, SSYEV failed to converge;
 | 
						|
*>                    i off-diagonal elements of an intermediate
 | 
						|
*>                    tridiagonal form did not converge to zero;
 | 
						|
*>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
 | 
						|
*>                    minor of order i of B is not positive definite.
 | 
						|
*>                    The factorization of B could not be completed and
 | 
						|
*>                    no eigenvalues or eigenvectors were computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realSYeigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 | 
						|
     $                  LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, UPLO
 | 
						|
      INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, UPPER, WANTZ
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            LWKMIN, LWKOPT, NB, NEIG
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV, LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SPOTRF, SSYEV, SSYGST, STRMM, STRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         LWKMIN = MAX( 1, 3*N - 1 )
 | 
						|
         NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
 | 
						|
         LWKOPT = MAX( LWKMIN, ( NB + 2 )*N )
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -11
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SSYGV ', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Form a Cholesky factorization of B.
 | 
						|
*
 | 
						|
      CALL SPOTRF( UPLO, N, B, LDB, INFO )
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         INFO = N + INFO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Transform problem to standard eigenvalue problem and solve.
 | 
						|
*
 | 
						|
      CALL SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | 
						|
      CALL SSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
*
 | 
						|
*        Backtransform eigenvectors to the original problem.
 | 
						|
*
 | 
						|
         NEIG = N
 | 
						|
         IF( INFO.GT.0 )
 | 
						|
     $      NEIG = INFO - 1
 | 
						|
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
 | 
						|
*           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
 | 
						|
*
 | 
						|
            IF( UPPER ) THEN
 | 
						|
               TRANS = 'N'
 | 
						|
            ELSE
 | 
						|
               TRANS = 'T'
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            CALL STRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
 | 
						|
     $                  B, LDB, A, LDA )
 | 
						|
*
 | 
						|
         ELSE IF( ITYPE.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*           For B*A*x=(lambda)*x;
 | 
						|
*           backtransform eigenvectors: x = L*y or U**T*y
 | 
						|
*
 | 
						|
            IF( UPPER ) THEN
 | 
						|
               TRANS = 'T'
 | 
						|
            ELSE
 | 
						|
               TRANS = 'N'
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            CALL STRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
 | 
						|
     $                  B, LDB, A, LDA )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSYGV
 | 
						|
*
 | 
						|
      END
 |