194 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLARFG generates an elementary reflector (Householder matrix).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLARFG + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfg.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfg.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfg.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INCX, N
 | 
						|
*       REAL               ALPHA, TAU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               X( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLARFG generates a real elementary reflector H of order n, such
 | 
						|
*> that
 | 
						|
*>
 | 
						|
*>       H * ( alpha ) = ( beta ),   H**T * H = I.
 | 
						|
*>           (   x   )   (   0  )
 | 
						|
*>
 | 
						|
*> where alpha and beta are scalars, and x is an (n-1)-element real
 | 
						|
*> vector. H is represented in the form
 | 
						|
*>
 | 
						|
*>       H = I - tau * ( 1 ) * ( 1 v**T ) ,
 | 
						|
*>                     ( v )
 | 
						|
*>
 | 
						|
*> where tau is a real scalar and v is a real (n-1)-element
 | 
						|
*> vector.
 | 
						|
*>
 | 
						|
*> If the elements of x are all zero, then tau = 0 and H is taken to be
 | 
						|
*> the unit matrix.
 | 
						|
*>
 | 
						|
*> Otherwise  1 <= tau <= 2.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the elementary reflector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is REAL
 | 
						|
*>          On entry, the value alpha.
 | 
						|
*>          On exit, it is overwritten with the value beta.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension
 | 
						|
*>                         (1+(N-2)*abs(INCX))
 | 
						|
*>          On entry, the vector x.
 | 
						|
*>          On exit, it is overwritten with the vector v.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>          The increment between elements of X. INCX > 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL
 | 
						|
*>          The value tau.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INCX, N
 | 
						|
      REAL               ALPHA, TAU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J, KNT
 | 
						|
      REAL               BETA, RSAFMN, SAFMIN, XNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH, SLAPY2, SNRM2
 | 
						|
      EXTERNAL           SLAMCH, SLAPY2, SNRM2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SIGN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SSCAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.LE.1 ) THEN
 | 
						|
         TAU = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      XNORM = SNRM2( N-1, X, INCX )
 | 
						|
*
 | 
						|
      IF( XNORM.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        H  =  I
 | 
						|
*
 | 
						|
         TAU = ZERO
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        general case
 | 
						|
*
 | 
						|
         BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
 | 
						|
         SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
 | 
						|
         KNT = 0
 | 
						|
         IF( ABS( BETA ).LT.SAFMIN ) THEN
 | 
						|
*
 | 
						|
*           XNORM, BETA may be inaccurate; scale X and recompute them
 | 
						|
*
 | 
						|
            RSAFMN = ONE / SAFMIN
 | 
						|
   10       CONTINUE
 | 
						|
            KNT = KNT + 1
 | 
						|
            CALL SSCAL( N-1, RSAFMN, X, INCX )
 | 
						|
            BETA = BETA*RSAFMN
 | 
						|
            ALPHA = ALPHA*RSAFMN
 | 
						|
            IF( (ABS( BETA ).LT.SAFMIN) .AND. (KNT .LT. 20) )
 | 
						|
     $         GO TO 10
 | 
						|
*
 | 
						|
*           New BETA is at most 1, at least SAFMIN
 | 
						|
*
 | 
						|
            XNORM = SNRM2( N-1, X, INCX )
 | 
						|
            BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
 | 
						|
         END IF
 | 
						|
         TAU = ( BETA-ALPHA ) / BETA
 | 
						|
         CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
 | 
						|
*
 | 
						|
*        If ALPHA is subnormal, it may lose relative accuracy
 | 
						|
*
 | 
						|
         DO 20 J = 1, KNT
 | 
						|
            BETA = BETA*SAFMIN
 | 
						|
 20      CONTINUE
 | 
						|
         ALPHA = BETA
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLARFG
 | 
						|
*
 | 
						|
      END
 |