184 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			184 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLAQR1 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr1.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr1.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr1.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL               SI1, SI2, SR1, SR2
 | 
						|
*       INTEGER            LDH, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               H( LDH, * ), V( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>      Given a 2-by-2 or 3-by-3 matrix H, SLAQR1 sets v to a
 | 
						|
*>      scalar multiple of the first column of the product
 | 
						|
*>
 | 
						|
*>      (*)  K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
 | 
						|
*>
 | 
						|
*>      scaling to avoid overflows and most underflows. It
 | 
						|
*>      is assumed that either
 | 
						|
*>
 | 
						|
*>              1) sr1 = sr2 and si1 = -si2
 | 
						|
*>          or
 | 
						|
*>              2) si1 = si2 = 0.
 | 
						|
*>
 | 
						|
*>      This is useful for starting double implicit shift bulges
 | 
						|
*>      in the QR algorithm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>              Order of the matrix H. N must be either 2 or 3.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is REAL array, dimension (LDH,N)
 | 
						|
*>              The 2-by-2 or 3-by-3 matrix H in (*).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDH
 | 
						|
*> \verbatim
 | 
						|
*>          LDH is INTEGER
 | 
						|
*>              The leading dimension of H as declared in
 | 
						|
*>              the calling procedure.  LDH >= N
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SR1
 | 
						|
*> \verbatim
 | 
						|
*>          SR1 is REAL
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SI1
 | 
						|
*> \verbatim
 | 
						|
*>          SI1 is REAL
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SR2
 | 
						|
*> \verbatim
 | 
						|
*>          SR2 is REAL
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SI2
 | 
						|
*> \verbatim
 | 
						|
*>          SI2 is REAL
 | 
						|
*>              The shifts in (*).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is REAL array, dimension (N)
 | 
						|
*>              A scalar multiple of the first column of the
 | 
						|
*>              matrix K in (*).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>       Karen Braman and Ralph Byers, Department of Mathematics,
 | 
						|
*>       University of Kansas, USA
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL               SI1, SI2, SR1, SR2
 | 
						|
      INTEGER            LDH, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               H( LDH, * ), V( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  ================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0e0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               H21S, H31S, S
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.NE.2 .AND. N.NE.3 ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( N.EQ.2 ) THEN
 | 
						|
         S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) )
 | 
						|
         IF( S.EQ.ZERO ) THEN
 | 
						|
            V( 1 ) = ZERO
 | 
						|
            V( 2 ) = ZERO
 | 
						|
         ELSE
 | 
						|
            H21S = H( 2, 1 ) / S
 | 
						|
            V( 1 ) = H21S*H( 1, 2 ) + ( H( 1, 1 )-SR1 )*
 | 
						|
     $               ( ( H( 1, 1 )-SR2 ) / S ) - SI1*( SI2 / S )
 | 
						|
            V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 )
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) ) +
 | 
						|
     $       ABS( H( 3, 1 ) )
 | 
						|
         IF( S.EQ.ZERO ) THEN
 | 
						|
            V( 1 ) = ZERO
 | 
						|
            V( 2 ) = ZERO
 | 
						|
            V( 3 ) = ZERO
 | 
						|
         ELSE
 | 
						|
            H21S = H( 2, 1 ) / S
 | 
						|
            H31S = H( 3, 1 ) / S
 | 
						|
            V( 1 ) = ( H( 1, 1 )-SR1 )*( ( H( 1, 1 )-SR2 ) / S ) -
 | 
						|
     $               SI1*( SI2 / S ) + H( 1, 2 )*H21S + H( 1, 3 )*H31S
 | 
						|
            V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 ) +
 | 
						|
     $               H( 2, 3 )*H31S
 | 
						|
            V( 3 ) = H31S*( H( 1, 1 )+H( 3, 3 )-SR1-SR2 ) +
 | 
						|
     $               H21S*H( 3, 2 )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      END
 |