372 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLAGV2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slagv2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slagv2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slagv2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
 | 
						|
*                          CSR, SNR )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDB
 | 
						|
*       REAL               CSL, CSR, SNL, SNR
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
 | 
						|
*      $                   B( LDB, * ), BETA( 2 )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
 | 
						|
*> matrix pencil (A,B) where B is upper triangular. This routine
 | 
						|
*> computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
 | 
						|
*> SNR such that
 | 
						|
*>
 | 
						|
*> 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
 | 
						|
*>    types), then
 | 
						|
*>
 | 
						|
*>    [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
 | 
						|
*>    [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
 | 
						|
*>
 | 
						|
*>    [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
 | 
						|
*>    [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],
 | 
						|
*>
 | 
						|
*> 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
 | 
						|
*>    then
 | 
						|
*>
 | 
						|
*>    [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
 | 
						|
*>    [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
 | 
						|
*>
 | 
						|
*>    [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
 | 
						|
*>    [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]
 | 
						|
*>
 | 
						|
*>    where b11 >= b22 > 0.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA, 2)
 | 
						|
*>          On entry, the 2 x 2 matrix A.
 | 
						|
*>          On exit, A is overwritten by the ``A-part'' of the
 | 
						|
*>          generalized Schur form.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          THe leading dimension of the array A.  LDA >= 2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB, 2)
 | 
						|
*>          On entry, the upper triangular 2 x 2 matrix B.
 | 
						|
*>          On exit, B is overwritten by the ``B-part'' of the
 | 
						|
*>          generalized Schur form.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          THe leading dimension of the array B.  LDB >= 2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAR
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAR is REAL array, dimension (2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAI
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAI is REAL array, dimension (2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is REAL array, dimension (2)
 | 
						|
*>          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
 | 
						|
*>          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may
 | 
						|
*>          be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] CSL
 | 
						|
*> \verbatim
 | 
						|
*>          CSL is REAL
 | 
						|
*>          The cosine of the left rotation matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SNL
 | 
						|
*> \verbatim
 | 
						|
*>          SNL is REAL
 | 
						|
*>          The sine of the left rotation matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] CSR
 | 
						|
*> \verbatim
 | 
						|
*>          CSR is REAL
 | 
						|
*>          The cosine of the right rotation matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SNR
 | 
						|
*> \verbatim
 | 
						|
*>          SNR is REAL
 | 
						|
*>          The sine of the right rotation matrix.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
 | 
						|
     $                   CSR, SNR )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDB
 | 
						|
      REAL               CSL, CSR, SNL, SNR
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
 | 
						|
     $                   B( LDB, * ), BETA( 2 )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               ANORM, ASCALE, BNORM, BSCALE, H1, H2, H3, QQ,
 | 
						|
     $                   R, RR, SAFMIN, SCALE1, SCALE2, T, ULP, WI, WR1,
 | 
						|
     $                   WR2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLAG2, SLARTG, SLASV2, SROT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH, SLAPY2
 | 
						|
      EXTERNAL           SLAMCH, SLAPY2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      SAFMIN = SLAMCH( 'S' )
 | 
						|
      ULP = SLAMCH( 'P' )
 | 
						|
*
 | 
						|
*     Scale A
 | 
						|
*
 | 
						|
      ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
 | 
						|
     $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
 | 
						|
      ASCALE = ONE / ANORM
 | 
						|
      A( 1, 1 ) = ASCALE*A( 1, 1 )
 | 
						|
      A( 1, 2 ) = ASCALE*A( 1, 2 )
 | 
						|
      A( 2, 1 ) = ASCALE*A( 2, 1 )
 | 
						|
      A( 2, 2 ) = ASCALE*A( 2, 2 )
 | 
						|
*
 | 
						|
*     Scale B
 | 
						|
*
 | 
						|
      BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
 | 
						|
     $        SAFMIN )
 | 
						|
      BSCALE = ONE / BNORM
 | 
						|
      B( 1, 1 ) = BSCALE*B( 1, 1 )
 | 
						|
      B( 1, 2 ) = BSCALE*B( 1, 2 )
 | 
						|
      B( 2, 2 ) = BSCALE*B( 2, 2 )
 | 
						|
*
 | 
						|
*     Check if A can be deflated
 | 
						|
*
 | 
						|
      IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN
 | 
						|
         CSL = ONE
 | 
						|
         SNL = ZERO
 | 
						|
         CSR = ONE
 | 
						|
         SNR = ZERO
 | 
						|
         A( 2, 1 ) = ZERO
 | 
						|
         B( 2, 1 ) = ZERO
 | 
						|
         WI = ZERO
 | 
						|
*
 | 
						|
*     Check if B is singular
 | 
						|
*
 | 
						|
      ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN
 | 
						|
         CALL SLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
 | 
						|
         CSR = ONE
 | 
						|
         SNR = ZERO
 | 
						|
         CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
 | 
						|
         CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
 | 
						|
         A( 2, 1 ) = ZERO
 | 
						|
         B( 1, 1 ) = ZERO
 | 
						|
         B( 2, 1 ) = ZERO
 | 
						|
         WI = ZERO
 | 
						|
*
 | 
						|
      ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN
 | 
						|
         CALL SLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T )
 | 
						|
         SNR = -SNR
 | 
						|
         CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
 | 
						|
         CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
 | 
						|
         CSL = ONE
 | 
						|
         SNL = ZERO
 | 
						|
         A( 2, 1 ) = ZERO
 | 
						|
         B( 2, 1 ) = ZERO
 | 
						|
         B( 2, 2 ) = ZERO
 | 
						|
         WI = ZERO
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        B is nonsingular, first compute the eigenvalues of (A,B)
 | 
						|
*
 | 
						|
         CALL SLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
 | 
						|
     $               WI )
 | 
						|
*
 | 
						|
         IF( WI.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*           two real eigenvalues, compute s*A-w*B
 | 
						|
*
 | 
						|
            H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 )
 | 
						|
            H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 )
 | 
						|
            H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 )
 | 
						|
*
 | 
						|
            RR = SLAPY2( H1, H2 )
 | 
						|
            QQ = SLAPY2( SCALE1*A( 2, 1 ), H3 )
 | 
						|
*
 | 
						|
            IF( RR.GT.QQ ) THEN
 | 
						|
*
 | 
						|
*              find right rotation matrix to zero 1,1 element of
 | 
						|
*              (sA - wB)
 | 
						|
*
 | 
						|
               CALL SLARTG( H2, H1, CSR, SNR, T )
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              find right rotation matrix to zero 2,1 element of
 | 
						|
*              (sA - wB)
 | 
						|
*
 | 
						|
               CALL SLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T )
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            SNR = -SNR
 | 
						|
            CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
 | 
						|
            CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
 | 
						|
*
 | 
						|
*           compute inf norms of A and B
 | 
						|
*
 | 
						|
            H1 = MAX( ABS( A( 1, 1 ) )+ABS( A( 1, 2 ) ),
 | 
						|
     $           ABS( A( 2, 1 ) )+ABS( A( 2, 2 ) ) )
 | 
						|
            H2 = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
 | 
						|
     $           ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
 | 
						|
*
 | 
						|
            IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
 | 
						|
*
 | 
						|
*              find left rotation matrix Q to zero out B(2,1)
 | 
						|
*
 | 
						|
               CALL SLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R )
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              find left rotation matrix Q to zero out A(2,1)
 | 
						|
*
 | 
						|
               CALL SLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
 | 
						|
            CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
 | 
						|
*
 | 
						|
            A( 2, 1 ) = ZERO
 | 
						|
            B( 2, 1 ) = ZERO
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           a pair of complex conjugate eigenvalues
 | 
						|
*           first compute the SVD of the matrix B
 | 
						|
*
 | 
						|
            CALL SLASV2( B( 1, 1 ), B( 1, 2 ), B( 2, 2 ), R, T, SNR,
 | 
						|
     $                   CSR, SNL, CSL )
 | 
						|
*
 | 
						|
*           Form (A,B) := Q(A,B)Z**T where Q is left rotation matrix and
 | 
						|
*           Z is right rotation matrix computed from SLASV2
 | 
						|
*
 | 
						|
            CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
 | 
						|
            CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
 | 
						|
            CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
 | 
						|
            CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
 | 
						|
*
 | 
						|
            B( 2, 1 ) = ZERO
 | 
						|
            B( 1, 2 ) = ZERO
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Unscaling
 | 
						|
*
 | 
						|
      A( 1, 1 ) = ANORM*A( 1, 1 )
 | 
						|
      A( 2, 1 ) = ANORM*A( 2, 1 )
 | 
						|
      A( 1, 2 ) = ANORM*A( 1, 2 )
 | 
						|
      A( 2, 2 ) = ANORM*A( 2, 2 )
 | 
						|
      B( 1, 1 ) = BNORM*B( 1, 1 )
 | 
						|
      B( 2, 1 ) = BNORM*B( 2, 1 )
 | 
						|
      B( 1, 2 ) = BNORM*B( 1, 2 )
 | 
						|
      B( 2, 2 ) = BNORM*B( 2, 2 )
 | 
						|
*
 | 
						|
      IF( WI.EQ.ZERO ) THEN
 | 
						|
         ALPHAR( 1 ) = A( 1, 1 )
 | 
						|
         ALPHAR( 2 ) = A( 2, 2 )
 | 
						|
         ALPHAI( 1 ) = ZERO
 | 
						|
         ALPHAI( 2 ) = ZERO
 | 
						|
         BETA( 1 ) = B( 1, 1 )
 | 
						|
         BETA( 2 ) = B( 2, 2 )
 | 
						|
      ELSE
 | 
						|
         ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM
 | 
						|
         ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM
 | 
						|
         ALPHAR( 2 ) = ALPHAR( 1 )
 | 
						|
         ALPHAI( 2 ) = -ALPHAI( 1 )
 | 
						|
         BETA( 1 ) = ONE
 | 
						|
         BETA( 2 ) = ONE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLAGV2
 | 
						|
*
 | 
						|
      END
 |