195 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAQZ1
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLAQZ1 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqz1.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqz1.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqz1.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*      SUBROUTINE DLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2,
 | 
						|
*     $    V )
 | 
						|
*      IMPLICIT NONE
 | 
						|
*
 | 
						|
*      Arguments
 | 
						|
*      INTEGER, INTENT( IN ) :: LDA, LDB
 | 
						|
*      DOUBLE PRECISION, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1,
 | 
						|
*     $                  SR2, SI, BETA1, BETA2
 | 
						|
*      DOUBLE PRECISION, INTENT( OUT ) :: V( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>      Given a 3-by-3 matrix pencil (A,B), DLAQZ1 sets v to a
 | 
						|
*>      scalar multiple of the first column of the product
 | 
						|
*>
 | 
						|
*>      (*)  K = (A - (beta2*sr2 - i*si)*B)*B^(-1)*(beta1*A - (sr2 + i*si2)*B)*B^(-1).
 | 
						|
*>
 | 
						|
*>      It is assumed that either
 | 
						|
*>
 | 
						|
*>              1) sr1 = sr2
 | 
						|
*>          or
 | 
						|
*>              2) si = 0.
 | 
						|
*>
 | 
						|
*>      This is useful for starting double implicit shift bulges
 | 
						|
*>      in the QZ algorithm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>              The 3-by-3 matrix A in (*).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>              The leading dimension of A as declared in
 | 
						|
*>              the calling procedure.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,N)
 | 
						|
*>              The 3-by-3 matrix B in (*).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>              The leading dimension of B as declared in
 | 
						|
*>              the calling procedure.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SR1
 | 
						|
*> \verbatim
 | 
						|
*>          SR1 is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SR2
 | 
						|
*> \verbatim
 | 
						|
*>          SR2 is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SI
 | 
						|
*> \verbatim
 | 
						|
*>          SI is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA1
 | 
						|
*> \verbatim
 | 
						|
*>          BETA1 is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA2
 | 
						|
*> \verbatim
 | 
						|
*>          BETA2 is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>              A scalar multiple of the first column of the
 | 
						|
*>              matrix K in (*).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Thijs Steel, KU Leuven
 | 
						|
*
 | 
						|
*> \date May 2020
 | 
						|
*
 | 
						|
*> \ingroup doubleGEcomputational
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2,
 | 
						|
     $                   V )
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*     Arguments
 | 
						|
      INTEGER, INTENT( IN ) :: LDA, LDB
 | 
						|
      DOUBLE PRECISION, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1,
 | 
						|
     $                  SR2, SI, BETA1, BETA2
 | 
						|
      DOUBLE PRECISION, INTENT( OUT ) :: V( * )
 | 
						|
*
 | 
						|
*     Parameters
 | 
						|
      DOUBLE PRECISION :: ZERO, ONE, HALF
 | 
						|
      PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
 | 
						|
*
 | 
						|
*     Local scalars
 | 
						|
      DOUBLE PRECISION :: W( 2 ), SAFMIN, SAFMAX, SCALE1, SCALE2
 | 
						|
*
 | 
						|
*     External Functions
 | 
						|
      DOUBLE PRECISION, EXTERNAL :: DLAMCH
 | 
						|
      LOGICAL, EXTERNAL :: DISNAN
 | 
						|
*
 | 
						|
      SAFMIN = DLAMCH( 'SAFE MINIMUM' )
 | 
						|
      SAFMAX = ONE/SAFMIN
 | 
						|
*
 | 
						|
*     Calculate first shifted vector
 | 
						|
*
 | 
						|
      W( 1 ) = BETA1*A( 1, 1 )-SR1*B( 1, 1 )
 | 
						|
      W( 2 ) = BETA1*A( 2, 1 )-SR1*B( 2, 1 )
 | 
						|
      SCALE1 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) )
 | 
						|
      IF( SCALE1 .GE. SAFMIN .AND. SCALE1 .LE. SAFMAX ) THEN
 | 
						|
         W( 1 ) = W( 1 )/SCALE1
 | 
						|
         W( 2 ) = W( 2 )/SCALE1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Solve linear system
 | 
						|
*
 | 
						|
      W( 2 ) = W( 2 )/B( 2, 2 )
 | 
						|
      W( 1 ) = ( W( 1 )-B( 1, 2 )*W( 2 ) )/B( 1, 1 )
 | 
						|
      SCALE2 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) )
 | 
						|
      IF( SCALE2 .GE. SAFMIN .AND. SCALE2 .LE. SAFMAX ) THEN
 | 
						|
         W( 1 ) = W( 1 )/SCALE2
 | 
						|
         W( 2 ) = W( 2 )/SCALE2
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Apply second shift
 | 
						|
*
 | 
						|
      V( 1 ) = BETA2*( A( 1, 1 )*W( 1 )+A( 1, 2 )*W( 2 ) )-SR2*( B( 1,
 | 
						|
     $   1 )*W( 1 )+B( 1, 2 )*W( 2 ) )
 | 
						|
      V( 2 ) = BETA2*( A( 2, 1 )*W( 1 )+A( 2, 2 )*W( 2 ) )-SR2*( B( 2,
 | 
						|
     $   1 )*W( 1 )+B( 2, 2 )*W( 2 ) )
 | 
						|
      V( 3 ) = BETA2*( A( 3, 1 )*W( 1 )+A( 3, 2 )*W( 2 ) )-SR2*( B( 3,
 | 
						|
     $   1 )*W( 1 )+B( 3, 2 )*W( 2 ) )
 | 
						|
*
 | 
						|
*     Account for imaginary part
 | 
						|
*
 | 
						|
      V( 1 ) = V( 1 )+SI*SI*B( 1, 1 )/SCALE1/SCALE2
 | 
						|
*
 | 
						|
*     Check for overflow
 | 
						|
*
 | 
						|
      IF( ABS( V( 1 ) ).GT.SAFMAX .OR. ABS( V( 2 ) ) .GT. SAFMAX .OR.
 | 
						|
     $   ABS( V( 3 ) ).GT.SAFMAX .OR. DISNAN( V( 1 ) ) .OR.
 | 
						|
     $   DISNAN( V( 2 ) ) .OR. DISNAN( V( 3 ) ) ) THEN
 | 
						|
         V( 1 ) = ZERO
 | 
						|
         V( 2 ) = ZERO
 | 
						|
         V( 3 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     End of DLAQZ1
 | 
						|
*
 | 
						|
      END SUBROUTINE
 |