1157 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1157 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* > \brief \b DLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download DLALN2 + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaln2.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaln2.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaln2.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, */
 | 
						|
/*                          LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) */
 | 
						|
 | 
						|
/*       LOGICAL            LTRANS */
 | 
						|
/*       INTEGER            INFO, LDA, LDB, LDX, NA, NW */
 | 
						|
/*       DOUBLE PRECISION   CA, D1, D2, SCALE, SMIN, WI, WR, XNORM */
 | 
						|
/*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), X( LDX, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > DLALN2 solves a system of the form  (ca A - w D ) X = s B */
 | 
						|
/* > or (ca A**T - w D) X = s B   with possible scaling ("s") and */
 | 
						|
/* > perturbation of A.  (A**T means A-transpose.) */
 | 
						|
/* > */
 | 
						|
/* > A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */
 | 
						|
/* > real diagonal matrix, w is a real or complex value, and X and B are */
 | 
						|
/* > NA x 1 matrices -- real if w is real, complex if w is complex.  NA */
 | 
						|
/* > may be 1 or 2. */
 | 
						|
/* > */
 | 
						|
/* > If w is complex, X and B are represented as NA x 2 matrices, */
 | 
						|
/* > the first column of each being the real part and the second */
 | 
						|
/* > being the imaginary part. */
 | 
						|
/* > */
 | 
						|
/* > "s" is a scaling factor (<= 1), computed by DLALN2, which is */
 | 
						|
/* > so chosen that X can be computed without overflow.  X is further */
 | 
						|
/* > scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */
 | 
						|
/* > than overflow. */
 | 
						|
/* > */
 | 
						|
/* > If both singular values of (ca A - w D) are less than SMIN, */
 | 
						|
/* > SMIN*identity will be used instead of (ca A - w D).  If only one */
 | 
						|
/* > singular value is less than SMIN, one element of (ca A - w D) will be */
 | 
						|
/* > perturbed enough to make the smallest singular value roughly SMIN. */
 | 
						|
/* > If both singular values are at least SMIN, (ca A - w D) will not be */
 | 
						|
/* > perturbed.  In any case, the perturbation will be at most some small */
 | 
						|
/* > multiple of f2cmax( SMIN, ulp*norm(ca A - w D) ).  The singular values */
 | 
						|
/* > are computed by infinity-norm approximations, and thus will only be */
 | 
						|
/* > correct to a factor of 2 or so. */
 | 
						|
/* > */
 | 
						|
/* > Note: all input quantities are assumed to be smaller than overflow */
 | 
						|
/* > by a reasonable factor.  (See BIGNUM.) */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] LTRANS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LTRANS is LOGICAL */
 | 
						|
/* >          =.TRUE.:  A-transpose will be used. */
 | 
						|
/* >          =.FALSE.: A will be used (not transposed.) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NA is INTEGER */
 | 
						|
/* >          The size of the matrix A.  It may (only) be 1 or 2. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NW */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NW is INTEGER */
 | 
						|
/* >          1 if "w" is real, 2 if "w" is complex.  It may only be 1 */
 | 
						|
/* >          or 2. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] SMIN */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SMIN is DOUBLE PRECISION */
 | 
						|
/* >          The desired lower bound on the singular values of A.  This */
 | 
						|
/* >          should be a safe distance away from underflow or overflow, */
 | 
						|
/* >          say, between (underflow/machine precision) and  (machine */
 | 
						|
/* >          precision * overflow ).  (See BIGNUM and ULP.) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] CA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          CA is DOUBLE PRECISION */
 | 
						|
/* >          The coefficient c, which A is multiplied by. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is DOUBLE PRECISION array, dimension (LDA,NA) */
 | 
						|
/* >          The NA x NA matrix A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of A.  It must be at least NA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] D1 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D1 is DOUBLE PRECISION */
 | 
						|
/* >          The 1,1 element in the diagonal matrix D. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] D2 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D2 is DOUBLE PRECISION */
 | 
						|
/* >          The 2,2 element in the diagonal matrix D.  Not used if NA=1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is DOUBLE PRECISION array, dimension (LDB,NW) */
 | 
						|
/* >          The NA x NW matrix B (right-hand side).  If NW=2 ("w" is */
 | 
						|
/* >          complex), column 1 contains the real part of B and column 2 */
 | 
						|
/* >          contains the imaginary part. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of B.  It must be at least NA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] WR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WR is DOUBLE PRECISION */
 | 
						|
/* >          The real part of the scalar "w". */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] WI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WI is DOUBLE PRECISION */
 | 
						|
/* >          The imaginary part of the scalar "w".  Not used if NW=1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] X */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X is DOUBLE PRECISION array, dimension (LDX,NW) */
 | 
						|
/* >          The NA x NW matrix X (unknowns), as computed by DLALN2. */
 | 
						|
/* >          If NW=2 ("w" is complex), on exit, column 1 will contain */
 | 
						|
/* >          the real part of X and column 2 will contain the imaginary */
 | 
						|
/* >          part. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDX */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDX is INTEGER */
 | 
						|
/* >          The leading dimension of X.  It must be at least NA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] SCALE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SCALE is DOUBLE PRECISION */
 | 
						|
/* >          The scale factor that B must be multiplied by to insure */
 | 
						|
/* >          that overflow does not occur when computing X.  Thus, */
 | 
						|
/* >          (ca A - w D) X  will be SCALE*B, not B (ignoring */
 | 
						|
/* >          perturbations of A.)  It will be at most 1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] XNORM */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          XNORM is DOUBLE PRECISION */
 | 
						|
/* >          The infinity-norm of X, when X is regarded as an NA x NW */
 | 
						|
/* >          real matrix. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          An error flag.  It will be set to zero if no error occurs, */
 | 
						|
/* >          a negative number if an argument is in error, or a positive */
 | 
						|
/* >          number if  ca A - w D  had to be perturbed. */
 | 
						|
/* >          The possible values are: */
 | 
						|
/* >          = 0: No error occurred, and (ca A - w D) did not have to be */
 | 
						|
/* >                 perturbed. */
 | 
						|
/* >          = 1: (ca A - w D) had to be perturbed to make its smallest */
 | 
						|
/* >               (or only) singular value greater than SMIN. */
 | 
						|
/* >          NOTE: In the interests of speed, this routine does not */
 | 
						|
/* >                check the inputs for errors. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup doubleOTHERauxiliary */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int dlaln2_(logical *ltrans, integer *na, integer *nw, 
 | 
						|
	doublereal *smin, doublereal *ca, doublereal *a, integer *lda, 
 | 
						|
	doublereal *d1, doublereal *d2, doublereal *b, integer *ldb, 
 | 
						|
	doublereal *wr, doublereal *wi, doublereal *x, integer *ldx, 
 | 
						|
	doublereal *scale, doublereal *xnorm, integer *info)
 | 
						|
{
 | 
						|
    /* Initialized data */
 | 
						|
 | 
						|
    static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
 | 
						|
    static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
 | 
						|
    static integer ipivot[16]	/* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
 | 
						|
	    4,3,2,1 };
 | 
						|
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
 | 
						|
    doublereal d__1, d__2, d__3, d__4, d__5, d__6;
 | 
						|
    static doublereal equiv_0[4], equiv_1[4];
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s;
 | 
						|
    integer j;
 | 
						|
    doublereal u22abs;
 | 
						|
    integer icmax;
 | 
						|
    doublereal bnorm, cnorm, smini;
 | 
						|
#define ci (equiv_0)
 | 
						|
#define cr (equiv_1)
 | 
						|
    extern doublereal dlamch_(char *);
 | 
						|
    extern /* Subroutine */ int dladiv_(doublereal *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, doublereal *);
 | 
						|
    doublereal bignum, bi1, bi2, br1, br2, smlnum, xi1, xi2, xr1, xr2, ci21, 
 | 
						|
	    ci22, cr21, cr22, li21, csi, ui11, lr21, ui12, ui22;
 | 
						|
#define civ (equiv_0)
 | 
						|
    doublereal csr, ur11, ur12, ur22;
 | 
						|
#define crv (equiv_1)
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/* ===================================================================== */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    x_dim1 = *ldx;
 | 
						|
    x_offset = 1 + x_dim1 * 1;
 | 
						|
    x -= x_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
 | 
						|
/*     Compute BIGNUM */
 | 
						|
 | 
						|
    smlnum = 2. * dlamch_("Safe minimum");
 | 
						|
    bignum = 1. / smlnum;
 | 
						|
    smini = f2cmax(*smin,smlnum);
 | 
						|
 | 
						|
/*     Don't check for input errors */
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
 | 
						|
/*     Standard Initializations */
 | 
						|
 | 
						|
    *scale = 1.;
 | 
						|
 | 
						|
    if (*na == 1) {
 | 
						|
 | 
						|
/*        1 x 1  (i.e., scalar) system   C X = B */
 | 
						|
 | 
						|
	if (*nw == 1) {
 | 
						|
 | 
						|
/*           Real 1x1 system. */
 | 
						|
 | 
						|
/*           C = ca A - w D */
 | 
						|
 | 
						|
	    csr = *ca * a[a_dim1 + 1] - *wr * *d1;
 | 
						|
	    cnorm = abs(csr);
 | 
						|
 | 
						|
/*           If | C | < SMINI, use C = SMINI */
 | 
						|
 | 
						|
	    if (cnorm < smini) {
 | 
						|
		csr = smini;
 | 
						|
		cnorm = smini;
 | 
						|
		*info = 1;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Check scaling for  X = B / C */
 | 
						|
 | 
						|
	    bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
 | 
						|
	    if (cnorm < 1. && bnorm > 1.) {
 | 
						|
		if (bnorm > bignum * cnorm) {
 | 
						|
		    *scale = 1. / bnorm;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Compute X */
 | 
						|
 | 
						|
	    x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
 | 
						|
	    *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Complex 1x1 system (w is complex) */
 | 
						|
 | 
						|
/*           C = ca A - w D */
 | 
						|
 | 
						|
	    csr = *ca * a[a_dim1 + 1] - *wr * *d1;
 | 
						|
	    csi = -(*wi) * *d1;
 | 
						|
	    cnorm = abs(csr) + abs(csi);
 | 
						|
 | 
						|
/*           If | C | < SMINI, use C = SMINI */
 | 
						|
 | 
						|
	    if (cnorm < smini) {
 | 
						|
		csr = smini;
 | 
						|
		csi = 0.;
 | 
						|
		cnorm = smini;
 | 
						|
		*info = 1;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Check scaling for  X = B / C */
 | 
						|
 | 
						|
	    bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 
 | 
						|
		    1) + 1], abs(d__2));
 | 
						|
	    if (cnorm < 1. && bnorm > 1.) {
 | 
						|
		if (bnorm > bignum * cnorm) {
 | 
						|
		    *scale = 1. / bnorm;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Compute X */
 | 
						|
 | 
						|
	    d__1 = *scale * b[b_dim1 + 1];
 | 
						|
	    d__2 = *scale * b[(b_dim1 << 1) + 1];
 | 
						|
	    dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1)
 | 
						|
		     + 1]);
 | 
						|
	    *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 
 | 
						|
		    1) + 1], abs(d__2));
 | 
						|
	}
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        2x2 System */
 | 
						|
 | 
						|
/*        Compute the real part of  C = ca A - w D  (or  ca A**T - w D ) */
 | 
						|
 | 
						|
	cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
 | 
						|
	cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2;
 | 
						|
	if (*ltrans) {
 | 
						|
	    cr[2] = *ca * a[a_dim1 + 2];
 | 
						|
	    cr[1] = *ca * a[(a_dim1 << 1) + 1];
 | 
						|
	} else {
 | 
						|
	    cr[1] = *ca * a[a_dim1 + 2];
 | 
						|
	    cr[2] = *ca * a[(a_dim1 << 1) + 1];
 | 
						|
	}
 | 
						|
 | 
						|
	if (*nw == 1) {
 | 
						|
 | 
						|
/*           Real 2x2 system  (w is real) */
 | 
						|
 | 
						|
/*           Find the largest element in C */
 | 
						|
 | 
						|
	    cmax = 0.;
 | 
						|
	    icmax = 0;
 | 
						|
 | 
						|
	    for (j = 1; j <= 4; ++j) {
 | 
						|
		if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
 | 
						|
		    cmax = (d__1 = crv[j - 1], abs(d__1));
 | 
						|
		    icmax = j;
 | 
						|
		}
 | 
						|
/* L10: */
 | 
						|
	    }
 | 
						|
 | 
						|
/*           If norm(C) < SMINI, use SMINI*identity. */
 | 
						|
 | 
						|
	    if (cmax < smini) {
 | 
						|
/* Computing MAX */
 | 
						|
		d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
 | 
						|
			b_dim1 + 2], abs(d__2));
 | 
						|
		bnorm = f2cmax(d__3,d__4);
 | 
						|
		if (smini < 1. && bnorm > 1.) {
 | 
						|
		    if (bnorm > bignum * smini) {
 | 
						|
			*scale = 1. / bnorm;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		temp = *scale / smini;
 | 
						|
		x[x_dim1 + 1] = temp * b[b_dim1 + 1];
 | 
						|
		x[x_dim1 + 2] = temp * b[b_dim1 + 2];
 | 
						|
		*xnorm = temp * bnorm;
 | 
						|
		*info = 1;
 | 
						|
		return 0;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Gaussian elimination with complete pivoting. */
 | 
						|
 | 
						|
	    ur11 = crv[icmax - 1];
 | 
						|
	    cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
 | 
						|
	    ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
 | 
						|
	    cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
 | 
						|
	    ur11r = 1. / ur11;
 | 
						|
	    lr21 = ur11r * cr21;
 | 
						|
	    ur22 = cr22 - ur12 * lr21;
 | 
						|
 | 
						|
/*           If smaller pivot < SMINI, use SMINI */
 | 
						|
 | 
						|
	    if (abs(ur22) < smini) {
 | 
						|
		ur22 = smini;
 | 
						|
		*info = 1;
 | 
						|
	    }
 | 
						|
	    if (rswap[icmax - 1]) {
 | 
						|
		br1 = b[b_dim1 + 2];
 | 
						|
		br2 = b[b_dim1 + 1];
 | 
						|
	    } else {
 | 
						|
		br1 = b[b_dim1 + 1];
 | 
						|
		br2 = b[b_dim1 + 2];
 | 
						|
	    }
 | 
						|
	    br2 -= lr21 * br1;
 | 
						|
/* Computing MAX */
 | 
						|
	    d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
 | 
						|
	    bbnd = f2cmax(d__2,d__3);
 | 
						|
	    if (bbnd > 1. && abs(ur22) < 1.) {
 | 
						|
		if (bbnd >= bignum * abs(ur22)) {
 | 
						|
		    *scale = 1. / bbnd;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    xr2 = br2 * *scale / ur22;
 | 
						|
	    xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
 | 
						|
	    if (zswap[icmax - 1]) {
 | 
						|
		x[x_dim1 + 1] = xr2;
 | 
						|
		x[x_dim1 + 2] = xr1;
 | 
						|
	    } else {
 | 
						|
		x[x_dim1 + 1] = xr1;
 | 
						|
		x[x_dim1 + 2] = xr2;
 | 
						|
	    }
 | 
						|
/* Computing MAX */
 | 
						|
	    d__1 = abs(xr1), d__2 = abs(xr2);
 | 
						|
	    *xnorm = f2cmax(d__1,d__2);
 | 
						|
 | 
						|
/*           Further scaling if  norm(A) norm(X) > overflow */
 | 
						|
 | 
						|
	    if (*xnorm > 1. && cmax > 1.) {
 | 
						|
		if (*xnorm > bignum / cmax) {
 | 
						|
		    temp = cmax / bignum;
 | 
						|
		    x[x_dim1 + 1] = temp * x[x_dim1 + 1];
 | 
						|
		    x[x_dim1 + 2] = temp * x[x_dim1 + 2];
 | 
						|
		    *xnorm = temp * *xnorm;
 | 
						|
		    *scale = temp * *scale;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Complex 2x2 system  (w is complex) */
 | 
						|
 | 
						|
/*           Find the largest element in C */
 | 
						|
 | 
						|
	    ci[0] = -(*wi) * *d1;
 | 
						|
	    ci[1] = 0.;
 | 
						|
	    ci[2] = 0.;
 | 
						|
	    ci[3] = -(*wi) * *d2;
 | 
						|
	    cmax = 0.;
 | 
						|
	    icmax = 0;
 | 
						|
 | 
						|
	    for (j = 1; j <= 4; ++j) {
 | 
						|
		if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
 | 
						|
			d__2)) > cmax) {
 | 
						|
		    cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
 | 
						|
			    , abs(d__2));
 | 
						|
		    icmax = j;
 | 
						|
		}
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
 | 
						|
/*           If norm(C) < SMINI, use SMINI*identity. */
 | 
						|
 | 
						|
	    if (cmax < smini) {
 | 
						|
/* Computing MAX */
 | 
						|
		d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 
 | 
						|
			<< 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], 
 | 
						|
			abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
 | 
						|
		bnorm = f2cmax(d__5,d__6);
 | 
						|
		if (smini < 1. && bnorm > 1.) {
 | 
						|
		    if (bnorm > bignum * smini) {
 | 
						|
			*scale = 1. / bnorm;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		temp = *scale / smini;
 | 
						|
		x[x_dim1 + 1] = temp * b[b_dim1 + 1];
 | 
						|
		x[x_dim1 + 2] = temp * b[b_dim1 + 2];
 | 
						|
		x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1];
 | 
						|
		x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2];
 | 
						|
		*xnorm = temp * bnorm;
 | 
						|
		*info = 1;
 | 
						|
		return 0;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Gaussian elimination with complete pivoting. */
 | 
						|
 | 
						|
	    ur11 = crv[icmax - 1];
 | 
						|
	    ui11 = civ[icmax - 1];
 | 
						|
	    cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
 | 
						|
	    ci21 = civ[ipivot[(icmax << 2) - 3] - 1];
 | 
						|
	    ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
 | 
						|
	    ui12 = civ[ipivot[(icmax << 2) - 2] - 1];
 | 
						|
	    cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
 | 
						|
	    ci22 = civ[ipivot[(icmax << 2) - 1] - 1];
 | 
						|
	    if (icmax == 1 || icmax == 4) {
 | 
						|
 | 
						|
/*              Code when off-diagonals of pivoted C are real */
 | 
						|
 | 
						|
		if (abs(ur11) > abs(ui11)) {
 | 
						|
		    temp = ui11 / ur11;
 | 
						|
/* Computing 2nd power */
 | 
						|
		    d__1 = temp;
 | 
						|
		    ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
 | 
						|
		    ui11r = -temp * ur11r;
 | 
						|
		} else {
 | 
						|
		    temp = ur11 / ui11;
 | 
						|
/* Computing 2nd power */
 | 
						|
		    d__1 = temp;
 | 
						|
		    ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
 | 
						|
		    ur11r = -temp * ui11r;
 | 
						|
		}
 | 
						|
		lr21 = cr21 * ur11r;
 | 
						|
		li21 = cr21 * ui11r;
 | 
						|
		ur12s = ur12 * ur11r;
 | 
						|
		ui12s = ur12 * ui11r;
 | 
						|
		ur22 = cr22 - ur12 * lr21;
 | 
						|
		ui22 = ci22 - ur12 * li21;
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              Code when diagonals of pivoted C are real */
 | 
						|
 | 
						|
		ur11r = 1. / ur11;
 | 
						|
		ui11r = 0.;
 | 
						|
		lr21 = cr21 * ur11r;
 | 
						|
		li21 = ci21 * ur11r;
 | 
						|
		ur12s = ur12 * ur11r;
 | 
						|
		ui12s = ui12 * ur11r;
 | 
						|
		ur22 = cr22 - ur12 * lr21 + ui12 * li21;
 | 
						|
		ui22 = -ur12 * li21 - ui12 * lr21;
 | 
						|
	    }
 | 
						|
	    u22abs = abs(ur22) + abs(ui22);
 | 
						|
 | 
						|
/*           If smaller pivot < SMINI, use SMINI */
 | 
						|
 | 
						|
	    if (u22abs < smini) {
 | 
						|
		ur22 = smini;
 | 
						|
		ui22 = 0.;
 | 
						|
		*info = 1;
 | 
						|
	    }
 | 
						|
	    if (rswap[icmax - 1]) {
 | 
						|
		br2 = b[b_dim1 + 1];
 | 
						|
		br1 = b[b_dim1 + 2];
 | 
						|
		bi2 = b[(b_dim1 << 1) + 1];
 | 
						|
		bi1 = b[(b_dim1 << 1) + 2];
 | 
						|
	    } else {
 | 
						|
		br1 = b[b_dim1 + 1];
 | 
						|
		br2 = b[b_dim1 + 2];
 | 
						|
		bi1 = b[(b_dim1 << 1) + 1];
 | 
						|
		bi2 = b[(b_dim1 << 1) + 2];
 | 
						|
	    }
 | 
						|
	    br2 = br2 - lr21 * br1 + li21 * bi1;
 | 
						|
	    bi2 = bi2 - li21 * br1 - lr21 * bi1;
 | 
						|
/* Computing MAX */
 | 
						|
	    d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
 | 
						|
		    ), d__2 = abs(br2) + abs(bi2);
 | 
						|
	    bbnd = f2cmax(d__1,d__2);
 | 
						|
	    if (bbnd > 1. && u22abs < 1.) {
 | 
						|
		if (bbnd >= bignum * u22abs) {
 | 
						|
		    *scale = 1. / bbnd;
 | 
						|
		    br1 = *scale * br1;
 | 
						|
		    bi1 = *scale * bi1;
 | 
						|
		    br2 = *scale * br2;
 | 
						|
		    bi2 = *scale * bi2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
 | 
						|
	    xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
 | 
						|
	    xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
 | 
						|
	    if (zswap[icmax - 1]) {
 | 
						|
		x[x_dim1 + 1] = xr2;
 | 
						|
		x[x_dim1 + 2] = xr1;
 | 
						|
		x[(x_dim1 << 1) + 1] = xi2;
 | 
						|
		x[(x_dim1 << 1) + 2] = xi1;
 | 
						|
	    } else {
 | 
						|
		x[x_dim1 + 1] = xr1;
 | 
						|
		x[x_dim1 + 2] = xr2;
 | 
						|
		x[(x_dim1 << 1) + 1] = xi1;
 | 
						|
		x[(x_dim1 << 1) + 2] = xi2;
 | 
						|
	    }
 | 
						|
/* Computing MAX */
 | 
						|
	    d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
 | 
						|
	    *xnorm = f2cmax(d__1,d__2);
 | 
						|
 | 
						|
/*           Further scaling if  norm(A) norm(X) > overflow */
 | 
						|
 | 
						|
	    if (*xnorm > 1. && cmax > 1.) {
 | 
						|
		if (*xnorm > bignum / cmax) {
 | 
						|
		    temp = cmax / bignum;
 | 
						|
		    x[x_dim1 + 1] = temp * x[x_dim1 + 1];
 | 
						|
		    x[x_dim1 + 2] = temp * x[x_dim1 + 2];
 | 
						|
		    x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1];
 | 
						|
		    x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2];
 | 
						|
		    *xnorm = temp * *xnorm;
 | 
						|
		    *scale = temp * *scale;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DLALN2 */
 | 
						|
 | 
						|
} /* dlaln2_ */
 | 
						|
 | 
						|
#undef crv
 | 
						|
#undef civ
 | 
						|
#undef cr
 | 
						|
#undef ci
 | 
						|
 | 
						|
 |