1294 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1294 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c_n1 = -1;
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c__0 = 0;
 | 
						|
static doublereal c_b36 = 0.;
 | 
						|
static doublereal c_b37 = 1.;
 | 
						|
 | 
						|
/* > \brief <b> DGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors 
 | 
						|
for GE matrices (blocked algorithm)</b> */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download DGGES3 + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgges3.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgges3.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgges3.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, */
 | 
						|
/*                          SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, */
 | 
						|
/*                          LDVSR, WORK, LWORK, BWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          JOBVSL, JOBVSR, SORT */
 | 
						|
/*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
 | 
						|
/*       LOGICAL            BWORK( * ) */
 | 
						|
/*       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
 | 
						|
/*      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
 | 
						|
/*      $                   VSR( LDVSR, * ), WORK( * ) */
 | 
						|
/*       LOGICAL            SELCTG */
 | 
						|
/*       EXTERNAL           SELCTG */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > DGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B), */
 | 
						|
/* > the generalized eigenvalues, the generalized real Schur form (S,T), */
 | 
						|
/* > optionally, the left and/or right matrices of Schur vectors (VSL and */
 | 
						|
/* > VSR). This gives the generalized Schur factorization */
 | 
						|
/* > */
 | 
						|
/* >          (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) */
 | 
						|
/* > */
 | 
						|
/* > Optionally, it also orders the eigenvalues so that a selected cluster */
 | 
						|
/* > of eigenvalues appears in the leading diagonal blocks of the upper */
 | 
						|
/* > quasi-triangular matrix S and the upper triangular matrix T.The */
 | 
						|
/* > leading columns of VSL and VSR then form an orthonormal basis for the */
 | 
						|
/* > corresponding left and right eigenspaces (deflating subspaces). */
 | 
						|
/* > */
 | 
						|
/* > (If only the generalized eigenvalues are needed, use the driver */
 | 
						|
/* > DGGEV instead, which is faster.) */
 | 
						|
/* > */
 | 
						|
/* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
 | 
						|
/* > or a ratio alpha/beta = w, such that  A - w*B is singular.  It is */
 | 
						|
/* > usually represented as the pair (alpha,beta), as there is a */
 | 
						|
/* > reasonable interpretation for beta=0 or both being zero. */
 | 
						|
/* > */
 | 
						|
/* > A pair of matrices (S,T) is in generalized real Schur form if T is */
 | 
						|
/* > upper triangular with non-negative diagonal and S is block upper */
 | 
						|
/* > triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond */
 | 
						|
/* > to real generalized eigenvalues, while 2-by-2 blocks of S will be */
 | 
						|
/* > "standardized" by making the corresponding elements of T have the */
 | 
						|
/* > form: */
 | 
						|
/* >         [  a  0  ] */
 | 
						|
/* >         [  0  b  ] */
 | 
						|
/* > */
 | 
						|
/* > and the pair of corresponding 2-by-2 blocks in S and T will have a */
 | 
						|
/* > complex conjugate pair of generalized eigenvalues. */
 | 
						|
/* > */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOBVSL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVSL is CHARACTER*1 */
 | 
						|
/* >          = 'N':  do not compute the left Schur vectors; */
 | 
						|
/* >          = 'V':  compute the left Schur vectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] JOBVSR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVSR is CHARACTER*1 */
 | 
						|
/* >          = 'N':  do not compute the right Schur vectors; */
 | 
						|
/* >          = 'V':  compute the right Schur vectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] SORT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SORT is CHARACTER*1 */
 | 
						|
/* >          Specifies whether or not to order the eigenvalues on the */
 | 
						|
/* >          diagonal of the generalized Schur form. */
 | 
						|
/* >          = 'N':  Eigenvalues are not ordered; */
 | 
						|
/* >          = 'S':  Eigenvalues are ordered (see SELCTG); */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] SELCTG */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments */
 | 
						|
/* >          SELCTG must be declared EXTERNAL in the calling subroutine. */
 | 
						|
/* >          If SORT = 'N', SELCTG is not referenced. */
 | 
						|
/* >          If SORT = 'S', SELCTG is used to select eigenvalues to sort */
 | 
						|
/* >          to the top left of the Schur form. */
 | 
						|
/* >          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
 | 
						|
/* >          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
 | 
						|
/* >          one of a complex conjugate pair of eigenvalues is selected, */
 | 
						|
/* >          then both complex eigenvalues are selected. */
 | 
						|
/* > */
 | 
						|
/* >          Note that in the ill-conditioned case, a selected complex */
 | 
						|
/* >          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), */
 | 
						|
/* >          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 */
 | 
						|
/* >          in this case. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrices A, B, VSL, and VSR.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is DOUBLE PRECISION array, dimension (LDA, N) */
 | 
						|
/* >          On entry, the first of the pair of matrices. */
 | 
						|
/* >          On exit, A has been overwritten by its generalized Schur */
 | 
						|
/* >          form S. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is DOUBLE PRECISION array, dimension (LDB, N) */
 | 
						|
/* >          On entry, the second of the pair of matrices. */
 | 
						|
/* >          On exit, B has been overwritten by its generalized Schur */
 | 
						|
/* >          form T. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of B.  LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] SDIM */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SDIM is INTEGER */
 | 
						|
/* >          If SORT = 'N', SDIM = 0. */
 | 
						|
/* >          If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
 | 
						|
/* >          for which SELCTG is true.  (Complex conjugate pairs for which */
 | 
						|
/* >          SELCTG is true for either eigenvalue count as 2.) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ALPHAR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHAR is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ALPHAI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHAI is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] BETA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BETA is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
 | 
						|
/* >          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i, */
 | 
						|
/* >          and  BETA(j),j=1,...,N are the diagonals of the complex Schur */
 | 
						|
/* >          form (S,T) that would result if the 2-by-2 diagonal blocks of */
 | 
						|
/* >          the real Schur form of (A,B) were further reduced to */
 | 
						|
/* >          triangular form using 2-by-2 complex unitary transformations. */
 | 
						|
/* >          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
 | 
						|
/* >          positive, then the j-th and (j+1)-st eigenvalues are a */
 | 
						|
/* >          complex conjugate pair, with ALPHAI(j+1) negative. */
 | 
						|
/* > */
 | 
						|
/* >          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
 | 
						|
/* >          may easily over- or underflow, and BETA(j) may even be zero. */
 | 
						|
/* >          Thus, the user should avoid naively computing the ratio. */
 | 
						|
/* >          However, ALPHAR and ALPHAI will be always less than and */
 | 
						|
/* >          usually comparable with norm(A) in magnitude, and BETA always */
 | 
						|
/* >          less than and usually comparable with norm(B). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VSL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VSL is DOUBLE PRECISION array, dimension (LDVSL,N) */
 | 
						|
/* >          If JOBVSL = 'V', VSL will contain the left Schur vectors. */
 | 
						|
/* >          Not referenced if JOBVSL = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVSL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVSL is INTEGER */
 | 
						|
/* >          The leading dimension of the matrix VSL. LDVSL >=1, and */
 | 
						|
/* >          if JOBVSL = 'V', LDVSL >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VSR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VSR is DOUBLE PRECISION array, dimension (LDVSR,N) */
 | 
						|
/* >          If JOBVSR = 'V', VSR will contain the right Schur vectors. */
 | 
						|
/* >          Not referenced if JOBVSR = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVSR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVSR is INTEGER */
 | 
						|
/* >          The leading dimension of the matrix VSR. LDVSR >= 1, and */
 | 
						|
/* >          if JOBVSR = 'V', LDVSR >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The dimension of the array WORK. */
 | 
						|
/* > */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >          only calculates the optimal size of the WORK array, returns */
 | 
						|
/* >          this value as the first entry of the WORK array, and no error */
 | 
						|
/* >          message related to LWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] BWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BWORK is LOGICAL array, dimension (N) */
 | 
						|
/* >          Not referenced if SORT = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* >          = 1,...,N: */
 | 
						|
/* >                The QZ iteration failed.  (A,B) are not in Schur */
 | 
						|
/* >                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
 | 
						|
/* >                be correct for j=INFO+1,...,N. */
 | 
						|
/* >          > N:  =N+1: other than QZ iteration failed in DHGEQZ. */
 | 
						|
/* >                =N+2: after reordering, roundoff changed values of */
 | 
						|
/* >                      some complex eigenvalues so that leading */
 | 
						|
/* >                      eigenvalues in the Generalized Schur form no */
 | 
						|
/* >                      longer satisfy SELCTG=.TRUE.  This could also */
 | 
						|
/* >                      be caused due to scaling. */
 | 
						|
/* >                =N+3: reordering failed in DTGSEN. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date January 2015 */
 | 
						|
 | 
						|
/* > \ingroup doubleGEeigen */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int dgges3_(char *jobvsl, char *jobvsr, char *sort, L_fp 
 | 
						|
	selctg, integer *n, doublereal *a, integer *lda, doublereal *b, 
 | 
						|
	integer *ldb, integer *sdim, doublereal *alphar, doublereal *alphai, 
 | 
						|
	doublereal *beta, doublereal *vsl, integer *ldvsl, doublereal *vsr, 
 | 
						|
	integer *ldvsr, doublereal *work, integer *lwork, logical *bwork, 
 | 
						|
	integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, 
 | 
						|
	    vsr_dim1, vsr_offset, i__1, i__2;
 | 
						|
    doublereal d__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    doublereal anrm, bnrm;
 | 
						|
    integer idum[1], ierr, itau, iwrk;
 | 
						|
    doublereal pvsl, pvsr;
 | 
						|
    integer i__;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer ileft, icols;
 | 
						|
    logical cursl, ilvsl, ilvsr;
 | 
						|
    extern /* Subroutine */ int dgghd3_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublereal *, integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *, integer *);
 | 
						|
    integer irows;
 | 
						|
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dggbak_(
 | 
						|
	    char *, char *, integer *, integer *, integer *, doublereal *, 
 | 
						|
	    doublereal *, integer *, doublereal *, integer *, integer *), dggbal_(char *, integer *, doublereal *, integer 
 | 
						|
	    *, doublereal *, integer *, integer *, integer *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, integer *);
 | 
						|
    logical lst2sl;
 | 
						|
    extern doublereal dlamch_(char *);
 | 
						|
    integer ip;
 | 
						|
    extern doublereal dlange_(char *, integer *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *);
 | 
						|
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
 | 
						|
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 | 
						|
	    integer *, integer *);
 | 
						|
    logical ilascl, ilbscl;
 | 
						|
    extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, doublereal *, integer *, integer *), 
 | 
						|
	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *);
 | 
						|
    doublereal safmin;
 | 
						|
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, integer *);
 | 
						|
    doublereal safmax;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    doublereal bignum;
 | 
						|
    extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *, 
 | 
						|
	    integer *, integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
 | 
						|
	     integer *, doublereal *, integer *, doublereal *, integer *, 
 | 
						|
	    integer *), dtgsen_(integer *, logical *, 
 | 
						|
	    logical *, logical *, integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
 | 
						|
	     doublereal *, integer *, doublereal *, integer *, integer *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
 | 
						|
	     integer *, integer *, integer *);
 | 
						|
    integer ijobvl, iright, ijobvr;
 | 
						|
    extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 
 | 
						|
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 | 
						|
	    integer *);
 | 
						|
    doublereal anrmto, bnrmto;
 | 
						|
    logical lastsl;
 | 
						|
    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 | 
						|
	    integer *, doublereal *, integer *, integer *);
 | 
						|
    doublereal smlnum;
 | 
						|
    logical wantst, lquery;
 | 
						|
    integer lwkopt;
 | 
						|
    doublereal dif[2];
 | 
						|
    integer ihi, ilo;
 | 
						|
    doublereal eps;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK driver routine (version 3.6.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     January 2015 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Decode the input arguments */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    --alphar;
 | 
						|
    --alphai;
 | 
						|
    --beta;
 | 
						|
    vsl_dim1 = *ldvsl;
 | 
						|
    vsl_offset = 1 + vsl_dim1 * 1;
 | 
						|
    vsl -= vsl_offset;
 | 
						|
    vsr_dim1 = *ldvsr;
 | 
						|
    vsr_offset = 1 + vsr_dim1 * 1;
 | 
						|
    vsr -= vsr_offset;
 | 
						|
    --work;
 | 
						|
    --bwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (lsame_(jobvsl, "N")) {
 | 
						|
	ijobvl = 1;
 | 
						|
	ilvsl = FALSE_;
 | 
						|
    } else if (lsame_(jobvsl, "V")) {
 | 
						|
	ijobvl = 2;
 | 
						|
	ilvsl = TRUE_;
 | 
						|
    } else {
 | 
						|
	ijobvl = -1;
 | 
						|
	ilvsl = FALSE_;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(jobvsr, "N")) {
 | 
						|
	ijobvr = 1;
 | 
						|
	ilvsr = FALSE_;
 | 
						|
    } else if (lsame_(jobvsr, "V")) {
 | 
						|
	ijobvr = 2;
 | 
						|
	ilvsr = TRUE_;
 | 
						|
    } else {
 | 
						|
	ijobvr = -1;
 | 
						|
	ilvsr = FALSE_;
 | 
						|
    }
 | 
						|
 | 
						|
    wantst = lsame_(sort, "S");
 | 
						|
 | 
						|
/*     Test the input arguments */
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    if (ijobvl <= 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (ijobvr <= 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (! wantst && ! lsame_(sort, "N")) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*ldb < f2cmax(1,*n)) {
 | 
						|
	*info = -9;
 | 
						|
    } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
 | 
						|
	*info = -15;
 | 
						|
    } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
 | 
						|
	*info = -17;
 | 
						|
    } else if (*lwork < *n * 6 + 16 && ! lquery) {
 | 
						|
	*info = -19;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute workspace */
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
	dgeqrf_(n, n, &b[b_offset], ldb, &work[1], &work[1], &c_n1, &ierr);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = *n * 6 + 16, i__2 = *n * 3 + (integer) work[1];
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
	dormqr_("L", "T", n, n, n, &b[b_offset], ldb, &work[1], &a[a_offset], 
 | 
						|
		lda, &work[1], &c_n1, &ierr);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
	if (ilvsl) {
 | 
						|
	    dorgqr_(n, n, n, &vsl[vsl_offset], ldvsl, &work[1], &work[1], &
 | 
						|
		    c_n1, &ierr);
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
 | 
						|
	    lwkopt = f2cmax(i__1,i__2);
 | 
						|
	}
 | 
						|
	dgghd3_(jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[b_offset], 
 | 
						|
		ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[
 | 
						|
		1], &c_n1, &ierr);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
	dhgeqz_("S", jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[
 | 
						|
		b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
 | 
						|
		vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[1], &c_n1, 
 | 
						|
		&ierr);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
	if (wantst) {
 | 
						|
	    dtgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &
 | 
						|
		    b[b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
 | 
						|
		    vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, 
 | 
						|
		    &pvsr, dif, &work[1], &c_n1, idum, &c__1, &ierr);
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
 | 
						|
	    lwkopt = f2cmax(i__1,i__2);
 | 
						|
	}
 | 
						|
	work[1] = (doublereal) lwkopt;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DGGES3 ", &i__1, (ftnlen)6);
 | 
						|
	return 0;
 | 
						|
    } else if (lquery) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	*sdim = 0;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants */
 | 
						|
 | 
						|
    eps = dlamch_("P");
 | 
						|
    safmin = dlamch_("S");
 | 
						|
    safmax = 1. / safmin;
 | 
						|
    dlabad_(&safmin, &safmax);
 | 
						|
    smlnum = sqrt(safmin) / eps;
 | 
						|
    bignum = 1. / smlnum;
 | 
						|
 | 
						|
/*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | 
						|
 | 
						|
    anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
 | 
						|
    ilascl = FALSE_;
 | 
						|
    if (anrm > 0. && anrm < smlnum) {
 | 
						|
	anrmto = smlnum;
 | 
						|
	ilascl = TRUE_;
 | 
						|
    } else if (anrm > bignum) {
 | 
						|
	anrmto = bignum;
 | 
						|
	ilascl = TRUE_;
 | 
						|
    }
 | 
						|
    if (ilascl) {
 | 
						|
	dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
 | 
						|
 | 
						|
    bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
 | 
						|
    ilbscl = FALSE_;
 | 
						|
    if (bnrm > 0. && bnrm < smlnum) {
 | 
						|
	bnrmto = smlnum;
 | 
						|
	ilbscl = TRUE_;
 | 
						|
    } else if (bnrm > bignum) {
 | 
						|
	bnrmto = bignum;
 | 
						|
	ilbscl = TRUE_;
 | 
						|
    }
 | 
						|
    if (ilbscl) {
 | 
						|
	dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Permute the matrix to make it more nearly triangular */
 | 
						|
 | 
						|
    ileft = 1;
 | 
						|
    iright = *n + 1;
 | 
						|
    iwrk = iright + *n;
 | 
						|
    dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
 | 
						|
	    ileft], &work[iright], &work[iwrk], &ierr);
 | 
						|
 | 
						|
/*     Reduce B to triangular form (QR decomposition of B) */
 | 
						|
 | 
						|
    irows = ihi + 1 - ilo;
 | 
						|
    icols = *n + 1 - ilo;
 | 
						|
    itau = iwrk;
 | 
						|
    iwrk = itau + irows;
 | 
						|
    i__1 = *lwork + 1 - iwrk;
 | 
						|
    dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 | 
						|
	    iwrk], &i__1, &ierr);
 | 
						|
 | 
						|
/*     Apply the orthogonal transformation to matrix A */
 | 
						|
 | 
						|
    i__1 = *lwork + 1 - iwrk;
 | 
						|
    dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 | 
						|
	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
 | 
						|
	    ierr);
 | 
						|
 | 
						|
/*     Initialize VSL */
 | 
						|
 | 
						|
    if (ilvsl) {
 | 
						|
	dlaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl);
 | 
						|
	if (irows > 1) {
 | 
						|
	    i__1 = irows - 1;
 | 
						|
	    i__2 = irows - 1;
 | 
						|
	    dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
 | 
						|
		    ilo + 1 + ilo * vsl_dim1], ldvsl);
 | 
						|
	}
 | 
						|
	i__1 = *lwork + 1 - iwrk;
 | 
						|
	dorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
 | 
						|
		work[itau], &work[iwrk], &i__1, &ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Initialize VSR */
 | 
						|
 | 
						|
    if (ilvsr) {
 | 
						|
	dlaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Reduce to generalized Hessenberg form */
 | 
						|
 | 
						|
    i__1 = *lwork + 1 - iwrk;
 | 
						|
    dgghd3_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 | 
						|
	    ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk]
 | 
						|
	    , &i__1, &ierr);
 | 
						|
 | 
						|
/*     Perform QZ algorithm, computing Schur vectors if desired */
 | 
						|
 | 
						|
    iwrk = itau;
 | 
						|
    i__1 = *lwork + 1 - iwrk;
 | 
						|
    dhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 | 
						|
	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
 | 
						|
	    , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
 | 
						|
    if (ierr != 0) {
 | 
						|
	if (ierr > 0 && ierr <= *n) {
 | 
						|
	    *info = ierr;
 | 
						|
	} else if (ierr > *n && ierr <= *n << 1) {
 | 
						|
	    *info = ierr - *n;
 | 
						|
	} else {
 | 
						|
	    *info = *n + 1;
 | 
						|
	}
 | 
						|
	goto L50;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Sort eigenvalues ALPHA/BETA if desired */
 | 
						|
 | 
						|
    *sdim = 0;
 | 
						|
    if (wantst) {
 | 
						|
 | 
						|
/*        Undo scaling on eigenvalues before SELCTGing */
 | 
						|
 | 
						|
	if (ilascl) {
 | 
						|
	    dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], 
 | 
						|
		    n, &ierr);
 | 
						|
	    dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], 
 | 
						|
		    n, &ierr);
 | 
						|
	}
 | 
						|
	if (ilbscl) {
 | 
						|
	    dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, 
 | 
						|
		    &ierr);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Select eigenvalues */
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
 | 
						|
	i__1 = *lwork - iwrk + 1;
 | 
						|
	dtgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
 | 
						|
		b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
 | 
						|
		vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &
 | 
						|
		pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr);
 | 
						|
	if (ierr == 1) {
 | 
						|
	    *info = *n + 3;
 | 
						|
	}
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
/*     Apply back-permutation to VSL and VSR */
 | 
						|
 | 
						|
    if (ilvsl) {
 | 
						|
	dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
 | 
						|
		vsl_offset], ldvsl, &ierr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilvsr) {
 | 
						|
	dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
 | 
						|
		vsr_offset], ldvsr, &ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Check if unscaling would cause over/underflow, if so, rescale */
 | 
						|
/*     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
 | 
						|
/*     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
 | 
						|
 | 
						|
    if (ilascl) {
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    if (alphai[i__] != 0.) {
 | 
						|
		if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
 | 
						|
			i__] > anrm / anrmto) {
 | 
						|
		    work[1] = (d__1 = a[i__ + i__ * a_dim1] / alphar[i__], 
 | 
						|
			    abs(d__1));
 | 
						|
		    beta[i__] *= work[1];
 | 
						|
		    alphar[i__] *= work[1];
 | 
						|
		    alphai[i__] *= work[1];
 | 
						|
		} else if (alphai[i__] / safmax > anrmto / anrm || safmin / 
 | 
						|
			alphai[i__] > anrm / anrmto) {
 | 
						|
		    work[1] = (d__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
 | 
						|
			    i__], abs(d__1));
 | 
						|
		    beta[i__] *= work[1];
 | 
						|
		    alphar[i__] *= work[1];
 | 
						|
		    alphai[i__] *= work[1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilbscl) {
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    if (alphai[i__] != 0.) {
 | 
						|
		if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__] 
 | 
						|
			> bnrm / bnrmto) {
 | 
						|
		    work[1] = (d__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
 | 
						|
			    d__1));
 | 
						|
		    beta[i__] *= work[1];
 | 
						|
		    alphar[i__] *= work[1];
 | 
						|
		    alphai[i__] *= work[1];
 | 
						|
		}
 | 
						|
	    }
 | 
						|
/* L30: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Undo scaling */
 | 
						|
 | 
						|
    if (ilascl) {
 | 
						|
	dlascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
 | 
						|
		ierr);
 | 
						|
	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
 | 
						|
		ierr);
 | 
						|
	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilbscl) {
 | 
						|
	dlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
 | 
						|
		ierr);
 | 
						|
	dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (wantst) {
 | 
						|
 | 
						|
/*        Check if reordering is correct */
 | 
						|
 | 
						|
	lastsl = TRUE_;
 | 
						|
	lst2sl = TRUE_;
 | 
						|
	*sdim = 0;
 | 
						|
	ip = 0;
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
 | 
						|
	    if (alphai[i__] == 0.) {
 | 
						|
		if (cursl) {
 | 
						|
		    ++(*sdim);
 | 
						|
		}
 | 
						|
		ip = 0;
 | 
						|
		if (cursl && ! lastsl) {
 | 
						|
		    *info = *n + 2;
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		if (ip == 1) {
 | 
						|
 | 
						|
/*                 Last eigenvalue of conjugate pair */
 | 
						|
 | 
						|
		    cursl = cursl || lastsl;
 | 
						|
		    lastsl = cursl;
 | 
						|
		    if (cursl) {
 | 
						|
			*sdim += 2;
 | 
						|
		    }
 | 
						|
		    ip = -1;
 | 
						|
		    if (cursl && ! lst2sl) {
 | 
						|
			*info = *n + 2;
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 First eigenvalue of conjugate pair */
 | 
						|
 | 
						|
		    ip = 1;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    lst2sl = lastsl;
 | 
						|
	    lastsl = cursl;
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
L50:
 | 
						|
 | 
						|
    work[1] = (doublereal) lwkopt;
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DGGES3 */
 | 
						|
 | 
						|
} /* dgges3_ */
 | 
						|
 |