199 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			199 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DGESC2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesc2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesc2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesc2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, N
 | 
						|
*       DOUBLE PRECISION   SCALE
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * ), JPIV( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), RHS( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGESC2 solves a system of linear equations
 | 
						|
*>
 | 
						|
*>           A * X = scale* RHS
 | 
						|
*>
 | 
						|
*> with a general N-by-N matrix A using the LU factorization with
 | 
						|
*> complete pivoting computed by DGETC2.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          On entry, the  LU part of the factorization of the n-by-n
 | 
						|
*>          matrix A computed by DGETC2:  A = P * L * U * Q
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1, N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] RHS
 | 
						|
*> \verbatim
 | 
						|
*>          RHS is DOUBLE PRECISION array, dimension (N).
 | 
						|
*>          On entry, the right hand side vector b.
 | 
						|
*>          On exit, the solution vector X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N).
 | 
						|
*>          The pivot indices; for 1 <= i <= N, row i of the
 | 
						|
*>          matrix has been interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JPIV
 | 
						|
*> \verbatim
 | 
						|
*>          JPIV is INTEGER array, dimension (N).
 | 
						|
*>          The pivot indices; for 1 <= j <= N, column j of the
 | 
						|
*>          matrix has been interchanged with column JPIV(j).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCALE
 | 
						|
*> \verbatim
 | 
						|
*>          SCALE is DOUBLE PRECISION
 | 
						|
*>          On exit, SCALE contains the scale factor. SCALE is chosen
 | 
						|
*>          0 <= SCALE <= 1 to prevent overflow in the solution.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleGEauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | 
						|
*>     Umea University, S-901 87 Umea, Sweden.
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, N
 | 
						|
      DOUBLE PRECISION   SCALE
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * ), JPIV( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), RHS( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, TWO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, TWO = 2.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   BIGNUM, EPS, SMLNUM, TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLASWP, DSCAL, DLABAD
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           IDAMAX, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*      Set constant to control overflow
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'P' )
 | 
						|
      SMLNUM = DLAMCH( 'S' ) / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL DLABAD( SMLNUM, BIGNUM )
 | 
						|
*
 | 
						|
*     Apply permutations IPIV to RHS
 | 
						|
*
 | 
						|
      CALL DLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 )
 | 
						|
*
 | 
						|
*     Solve for L part
 | 
						|
*
 | 
						|
      DO 20 I = 1, N - 1
 | 
						|
         DO 10 J = I + 1, N
 | 
						|
            RHS( J ) = RHS( J ) - A( J, I )*RHS( I )
 | 
						|
   10    CONTINUE
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     Solve for U part
 | 
						|
*
 | 
						|
      SCALE = ONE
 | 
						|
*
 | 
						|
*     Check for scaling
 | 
						|
*
 | 
						|
      I = IDAMAX( N, RHS, 1 )
 | 
						|
      IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN
 | 
						|
         TEMP = ( ONE / TWO ) / ABS( RHS( I ) )
 | 
						|
         CALL DSCAL( N, TEMP, RHS( 1 ), 1 )
 | 
						|
         SCALE = SCALE*TEMP
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DO 40 I = N, 1, -1
 | 
						|
         TEMP = ONE / A( I, I )
 | 
						|
         RHS( I ) = RHS( I )*TEMP
 | 
						|
         DO 30 J = I + 1, N
 | 
						|
            RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP )
 | 
						|
   30    CONTINUE
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Apply permutations JPIV to the solution (RHS)
 | 
						|
*
 | 
						|
      CALL DLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGESC2
 | 
						|
*
 | 
						|
      END
 |