1029 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1029 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b CTRSNA */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CTRSNA + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrsna.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrsna.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrsna.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
 | 
						|
/*                          LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK, */
 | 
						|
/*                          INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          HOWMNY, JOB */
 | 
						|
/*       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N */
 | 
						|
/*       LOGICAL            SELECT( * ) */
 | 
						|
/*       REAL               RWORK( * ), S( * ), SEP( * ) */
 | 
						|
/*       COMPLEX            T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), */
 | 
						|
/*      $                   WORK( LDWORK, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > CTRSNA estimates reciprocal condition numbers for specified */
 | 
						|
/* > eigenvalues and/or right eigenvectors of a complex upper triangular */
 | 
						|
/* > matrix T (or of any matrix Q*T*Q**H with Q unitary). */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOB is CHARACTER*1 */
 | 
						|
/* >          Specifies whether condition numbers are required for */
 | 
						|
/* >          eigenvalues (S) or eigenvectors (SEP): */
 | 
						|
/* >          = 'E': for eigenvalues only (S); */
 | 
						|
/* >          = 'V': for eigenvectors only (SEP); */
 | 
						|
/* >          = 'B': for both eigenvalues and eigenvectors (S and SEP). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] HOWMNY */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          HOWMNY is CHARACTER*1 */
 | 
						|
/* >          = 'A': compute condition numbers for all eigenpairs; */
 | 
						|
/* >          = 'S': compute condition numbers for selected eigenpairs */
 | 
						|
/* >                 specified by the array SELECT. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] SELECT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SELECT is LOGICAL array, dimension (N) */
 | 
						|
/* >          If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
 | 
						|
/* >          condition numbers are required. To select condition numbers */
 | 
						|
/* >          for the j-th eigenpair, SELECT(j) must be set to .TRUE.. */
 | 
						|
/* >          If HOWMNY = 'A', SELECT is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix T. N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] T */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          T is COMPLEX array, dimension (LDT,N) */
 | 
						|
/* >          The upper triangular matrix T. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDT is INTEGER */
 | 
						|
/* >          The leading dimension of the array T. LDT >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] VL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VL is COMPLEX array, dimension (LDVL,M) */
 | 
						|
/* >          If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
 | 
						|
/* >          (or of any Q*T*Q**H with Q unitary), corresponding to the */
 | 
						|
/* >          eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
 | 
						|
/* >          must be stored in consecutive columns of VL, as returned by */
 | 
						|
/* >          CHSEIN or CTREVC. */
 | 
						|
/* >          If JOB = 'V', VL is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVL is INTEGER */
 | 
						|
/* >          The leading dimension of the array VL. */
 | 
						|
/* >          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] VR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VR is COMPLEX array, dimension (LDVR,M) */
 | 
						|
/* >          If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
 | 
						|
/* >          (or of any Q*T*Q**H with Q unitary), corresponding to the */
 | 
						|
/* >          eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
 | 
						|
/* >          must be stored in consecutive columns of VR, as returned by */
 | 
						|
/* >          CHSEIN or CTREVC. */
 | 
						|
/* >          If JOB = 'V', VR is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVR is INTEGER */
 | 
						|
/* >          The leading dimension of the array VR. */
 | 
						|
/* >          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] S */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          S is REAL array, dimension (MM) */
 | 
						|
/* >          If JOB = 'E' or 'B', the reciprocal condition numbers of the */
 | 
						|
/* >          selected eigenvalues, stored in consecutive elements of the */
 | 
						|
/* >          array. Thus S(j), SEP(j), and the j-th columns of VL and VR */
 | 
						|
/* >          all correspond to the same eigenpair (but not in general the */
 | 
						|
/* >          j-th eigenpair, unless all eigenpairs are selected). */
 | 
						|
/* >          If JOB = 'V', S is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] SEP */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SEP is REAL array, dimension (MM) */
 | 
						|
/* >          If JOB = 'V' or 'B', the estimated reciprocal condition */
 | 
						|
/* >          numbers of the selected eigenvectors, stored in consecutive */
 | 
						|
/* >          elements of the array. */
 | 
						|
/* >          If JOB = 'E', SEP is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] MM */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          MM is INTEGER */
 | 
						|
/* >          The number of elements in the arrays S (if JOB = 'E' or 'B') */
 | 
						|
/* >           and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The number of elements of the arrays S and/or SEP actually */
 | 
						|
/* >          used to store the estimated condition numbers. */
 | 
						|
/* >          If HOWMNY = 'A', M is set to N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is COMPLEX array, dimension (LDWORK,N+6) */
 | 
						|
/* >          If JOB = 'E', WORK is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDWORK is INTEGER */
 | 
						|
/* >          The leading dimension of the array WORK. */
 | 
						|
/* >          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RWORK is REAL array, dimension (N) */
 | 
						|
/* >          If JOB = 'E', RWORK is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0: successful exit */
 | 
						|
/* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexOTHERcomputational */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  The reciprocal of the condition number of an eigenvalue lambda is */
 | 
						|
/* >  defined as */
 | 
						|
/* > */
 | 
						|
/* >          S(lambda) = |v**H*u| / (norm(u)*norm(v)) */
 | 
						|
/* > */
 | 
						|
/* >  where u and v are the right and left eigenvectors of T corresponding */
 | 
						|
/* >  to lambda; v**H denotes the conjugate transpose of v, and norm(u) */
 | 
						|
/* >  denotes the Euclidean norm. These reciprocal condition numbers always */
 | 
						|
/* >  lie between zero (very badly conditioned) and one (very well */
 | 
						|
/* >  conditioned). If n = 1, S(lambda) is defined to be 1. */
 | 
						|
/* > */
 | 
						|
/* >  An approximate error bound for a computed eigenvalue W(i) is given by */
 | 
						|
/* > */
 | 
						|
/* >                      EPS * norm(T) / S(i) */
 | 
						|
/* > */
 | 
						|
/* >  where EPS is the machine precision. */
 | 
						|
/* > */
 | 
						|
/* >  The reciprocal of the condition number of the right eigenvector u */
 | 
						|
/* >  corresponding to lambda is defined as follows. Suppose */
 | 
						|
/* > */
 | 
						|
/* >              T = ( lambda  c  ) */
 | 
						|
/* >                  (   0    T22 ) */
 | 
						|
/* > */
 | 
						|
/* >  Then the reciprocal condition number is */
 | 
						|
/* > */
 | 
						|
/* >          SEP( lambda, T22 ) = sigma-f2cmin( T22 - lambda*I ) */
 | 
						|
/* > */
 | 
						|
/* >  where sigma-f2cmin denotes the smallest singular value. We approximate */
 | 
						|
/* >  the smallest singular value by the reciprocal of an estimate of the */
 | 
						|
/* >  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
 | 
						|
/* >  defined to be abs(T(1,1)). */
 | 
						|
/* > */
 | 
						|
/* >  An approximate error bound for a computed right eigenvector VR(i) */
 | 
						|
/* >  is given by */
 | 
						|
/* > */
 | 
						|
/* >                      EPS * norm(T) / SEP(i) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int ctrsna_(char *job, char *howmny, logical *select, 
 | 
						|
	integer *n, complex *t, integer *ldt, complex *vl, integer *ldvl, 
 | 
						|
	complex *vr, integer *ldvr, real *s, real *sep, integer *mm, integer *
 | 
						|
	m, complex *work, integer *ldwork, real *rwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, 
 | 
						|
	    work_dim1, work_offset, i__1, i__2, i__3, i__4, i__5;
 | 
						|
    real r__1, r__2;
 | 
						|
    complex q__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer kase, ierr;
 | 
						|
    complex prod;
 | 
						|
    real lnrm, rnrm;
 | 
						|
    integer i__, j, k;
 | 
						|
    real scale;
 | 
						|
    extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer 
 | 
						|
	    *, complex *, integer *);
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer isave[3];
 | 
						|
    complex dummy[1];
 | 
						|
    logical wants;
 | 
						|
    extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real 
 | 
						|
	    *, integer *, integer *);
 | 
						|
    real xnorm;
 | 
						|
    extern real scnrm2_(integer *, complex *, integer *);
 | 
						|
    extern /* Subroutine */ int slabad_(real *, real *);
 | 
						|
    integer ks, ix;
 | 
						|
    extern integer icamax_(integer *, complex *, integer *);
 | 
						|
    extern real slamch_(char *);
 | 
						|
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
 | 
						|
	    *, integer *, complex *, integer *), xerbla_(char *, 
 | 
						|
	    integer *, ftnlen);
 | 
						|
    real bignum;
 | 
						|
    logical wantbh;
 | 
						|
    extern /* Subroutine */ int clatrs_(char *, char *, char *, char *, 
 | 
						|
	    integer *, complex *, integer *, complex *, real *, real *, 
 | 
						|
	    integer *), csrscl_(integer *, 
 | 
						|
	    real *, complex *, integer *), ctrexc_(char *, integer *, complex 
 | 
						|
	    *, integer *, complex *, integer *, integer *, integer *, integer 
 | 
						|
	    *);
 | 
						|
    logical somcon;
 | 
						|
    char normin[1];
 | 
						|
    real smlnum;
 | 
						|
    logical wantsp;
 | 
						|
    real eps, est;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Decode and test the input parameters */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --select;
 | 
						|
    t_dim1 = *ldt;
 | 
						|
    t_offset = 1 + t_dim1 * 1;
 | 
						|
    t -= t_offset;
 | 
						|
    vl_dim1 = *ldvl;
 | 
						|
    vl_offset = 1 + vl_dim1 * 1;
 | 
						|
    vl -= vl_offset;
 | 
						|
    vr_dim1 = *ldvr;
 | 
						|
    vr_offset = 1 + vr_dim1 * 1;
 | 
						|
    vr -= vr_offset;
 | 
						|
    --s;
 | 
						|
    --sep;
 | 
						|
    work_dim1 = *ldwork;
 | 
						|
    work_offset = 1 + work_dim1 * 1;
 | 
						|
    work -= work_offset;
 | 
						|
    --rwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    wantbh = lsame_(job, "B");
 | 
						|
    wants = lsame_(job, "E") || wantbh;
 | 
						|
    wantsp = lsame_(job, "V") || wantbh;
 | 
						|
 | 
						|
    somcon = lsame_(howmny, "S");
 | 
						|
 | 
						|
/*     Set M to the number of eigenpairs for which condition numbers are */
 | 
						|
/*     to be computed. */
 | 
						|
 | 
						|
    if (somcon) {
 | 
						|
	*m = 0;
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    if (select[j]) {
 | 
						|
		++(*m);
 | 
						|
	    }
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	*m = *n;
 | 
						|
    }
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    if (! wants && ! wantsp) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! lsame_(howmny, "A") && ! somcon) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*ldt < f2cmax(1,*n)) {
 | 
						|
	*info = -6;
 | 
						|
    } else if (*ldvl < 1 || wants && *ldvl < *n) {
 | 
						|
	*info = -8;
 | 
						|
    } else if (*ldvr < 1 || wants && *ldvr < *n) {
 | 
						|
	*info = -10;
 | 
						|
    } else if (*mm < *m) {
 | 
						|
	*info = -13;
 | 
						|
    } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
 | 
						|
	*info = -16;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CTRSNA", &i__1, (ftnlen)6);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*n == 1) {
 | 
						|
	if (somcon) {
 | 
						|
	    if (! select[1]) {
 | 
						|
		return 0;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (wants) {
 | 
						|
	    s[1] = 1.f;
 | 
						|
	}
 | 
						|
	if (wantsp) {
 | 
						|
	    sep[1] = c_abs(&t[t_dim1 + 1]);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants */
 | 
						|
 | 
						|
    eps = slamch_("P");
 | 
						|
    smlnum = slamch_("S") / eps;
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
    slabad_(&smlnum, &bignum);
 | 
						|
 | 
						|
    ks = 1;
 | 
						|
    i__1 = *n;
 | 
						|
    for (k = 1; k <= i__1; ++k) {
 | 
						|
 | 
						|
	if (somcon) {
 | 
						|
	    if (! select[k]) {
 | 
						|
		goto L50;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	if (wants) {
 | 
						|
 | 
						|
/*           Compute the reciprocal condition number of the k-th */
 | 
						|
/*           eigenvalue. */
 | 
						|
 | 
						|
	    cdotc_(&q__1, n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * vl_dim1 + 
 | 
						|
		    1], &c__1);
 | 
						|
	    prod.r = q__1.r, prod.i = q__1.i;
 | 
						|
	    rnrm = scnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
 | 
						|
	    lnrm = scnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
 | 
						|
	    s[ks] = c_abs(&prod) / (rnrm * lnrm);
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	if (wantsp) {
 | 
						|
 | 
						|
/*           Estimate the reciprocal condition number of the k-th */
 | 
						|
/*           eigenvector. */
 | 
						|
 | 
						|
/*           Copy the matrix T to the array WORK and swap the k-th */
 | 
						|
/*           diagonal element to the (1,1) position. */
 | 
						|
 | 
						|
	    clacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset], 
 | 
						|
		    ldwork);
 | 
						|
	    ctrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &k, &
 | 
						|
		    c__1, &ierr);
 | 
						|
 | 
						|
/*           Form  C = T22 - lambda*I in WORK(2:N,2:N). */
 | 
						|
 | 
						|
	    i__2 = *n;
 | 
						|
	    for (i__ = 2; i__ <= i__2; ++i__) {
 | 
						|
		i__3 = i__ + i__ * work_dim1;
 | 
						|
		i__4 = i__ + i__ * work_dim1;
 | 
						|
		i__5 = work_dim1 + 1;
 | 
						|
		q__1.r = work[i__4].r - work[i__5].r, q__1.i = work[i__4].i - 
 | 
						|
			work[i__5].i;
 | 
						|
		work[i__3].r = q__1.r, work[i__3].i = q__1.i;
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Estimate a lower bound for the 1-norm of inv(C**H). The 1st */
 | 
						|
/*           and (N+1)th columns of WORK are used to store work vectors. */
 | 
						|
 | 
						|
	    sep[ks] = 0.f;
 | 
						|
	    est = 0.f;
 | 
						|
	    kase = 0;
 | 
						|
	    *(unsigned char *)normin = 'N';
 | 
						|
L30:
 | 
						|
	    i__2 = *n - 1;
 | 
						|
	    clacn2_(&i__2, &work[(*n + 1) * work_dim1 + 1], &work[work_offset]
 | 
						|
		    , &est, &kase, isave);
 | 
						|
 | 
						|
	    if (kase != 0) {
 | 
						|
		if (kase == 1) {
 | 
						|
 | 
						|
/*                 Solve C**H*x = scale*b */
 | 
						|
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    clatrs_("Upper", "Conjugate transpose", "Nonunit", normin,
 | 
						|
			     &i__2, &work[(work_dim1 << 1) + 2], ldwork, &
 | 
						|
			    work[work_offset], &scale, &rwork[1], &ierr);
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 Solve C*x = scale*b */
 | 
						|
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    clatrs_("Upper", "No transpose", "Nonunit", normin, &i__2,
 | 
						|
			     &work[(work_dim1 << 1) + 2], ldwork, &work[
 | 
						|
			    work_offset], &scale, &rwork[1], &ierr);
 | 
						|
		}
 | 
						|
		*(unsigned char *)normin = 'Y';
 | 
						|
		if (scale != 1.f) {
 | 
						|
 | 
						|
/*                 Multiply by 1/SCALE if doing so will not cause */
 | 
						|
/*                 overflow. */
 | 
						|
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    ix = icamax_(&i__2, &work[work_offset], &c__1);
 | 
						|
		    i__2 = ix + work_dim1;
 | 
						|
		    xnorm = (r__1 = work[i__2].r, abs(r__1)) + (r__2 = r_imag(
 | 
						|
			    &work[ix + work_dim1]), abs(r__2));
 | 
						|
		    if (scale < xnorm * smlnum || scale == 0.f) {
 | 
						|
			goto L40;
 | 
						|
		    }
 | 
						|
		    csrscl_(n, &scale, &work[work_offset], &c__1);
 | 
						|
		}
 | 
						|
		goto L30;
 | 
						|
	    }
 | 
						|
 | 
						|
	    sep[ks] = 1.f / f2cmax(est,smlnum);
 | 
						|
	}
 | 
						|
 | 
						|
L40:
 | 
						|
	++ks;
 | 
						|
L50:
 | 
						|
	;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of CTRSNA */
 | 
						|
 | 
						|
} /* ctrsna_ */
 | 
						|
 |