1553 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1553 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static complex c_b1 = {0.f,0.f};
 | 
						|
static complex c_b2 = {1.f,0.f};
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b CTGEVC */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CTGEVC + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgevc.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgevc.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgevc.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL, */
 | 
						|
/*                          LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          HOWMNY, SIDE */
 | 
						|
/*       INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N */
 | 
						|
/*       LOGICAL            SELECT( * ) */
 | 
						|
/*       REAL               RWORK( * ) */
 | 
						|
/*       COMPLEX            P( LDP, * ), S( LDS, * ), VL( LDVL, * ), */
 | 
						|
/*      $                   VR( LDVR, * ), WORK( * ) */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > CTGEVC computes some or all of the right and/or left eigenvectors of */
 | 
						|
/* > a pair of complex matrices (S,P), where S and P are upper triangular. */
 | 
						|
/* > Matrix pairs of this type are produced by the generalized Schur */
 | 
						|
/* > factorization of a complex matrix pair (A,B): */
 | 
						|
/* > */
 | 
						|
/* >    A = Q*S*Z**H,  B = Q*P*Z**H */
 | 
						|
/* > */
 | 
						|
/* > as computed by CGGHRD + CHGEQZ. */
 | 
						|
/* > */
 | 
						|
/* > The right eigenvector x and the left eigenvector y of (S,P) */
 | 
						|
/* > corresponding to an eigenvalue w are defined by: */
 | 
						|
/* > */
 | 
						|
/* >    S*x = w*P*x,  (y**H)*S = w*(y**H)*P, */
 | 
						|
/* > */
 | 
						|
/* > where y**H denotes the conjugate tranpose of y. */
 | 
						|
/* > The eigenvalues are not input to this routine, but are computed */
 | 
						|
/* > directly from the diagonal elements of S and P. */
 | 
						|
/* > */
 | 
						|
/* > This routine returns the matrices X and/or Y of right and left */
 | 
						|
/* > eigenvectors of (S,P), or the products Z*X and/or Q*Y, */
 | 
						|
/* > where Z and Q are input matrices. */
 | 
						|
/* > If Q and Z are the unitary factors from the generalized Schur */
 | 
						|
/* > factorization of a matrix pair (A,B), then Z*X and Q*Y */
 | 
						|
/* > are the matrices of right and left eigenvectors of (A,B). */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] SIDE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SIDE is CHARACTER*1 */
 | 
						|
/* >          = 'R': compute right eigenvectors only; */
 | 
						|
/* >          = 'L': compute left eigenvectors only; */
 | 
						|
/* >          = 'B': compute both right and left eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] HOWMNY */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          HOWMNY is CHARACTER*1 */
 | 
						|
/* >          = 'A': compute all right and/or left eigenvectors; */
 | 
						|
/* >          = 'B': compute all right and/or left eigenvectors, */
 | 
						|
/* >                 backtransformed by the matrices in VR and/or VL; */
 | 
						|
/* >          = 'S': compute selected right and/or left eigenvectors, */
 | 
						|
/* >                 specified by the logical array SELECT. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] SELECT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SELECT is LOGICAL array, dimension (N) */
 | 
						|
/* >          If HOWMNY='S', SELECT specifies the eigenvectors to be */
 | 
						|
/* >          computed.  The eigenvector corresponding to the j-th */
 | 
						|
/* >          eigenvalue is computed if SELECT(j) = .TRUE.. */
 | 
						|
/* >          Not referenced if HOWMNY = 'A' or 'B'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrices S and P.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] S */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          S is COMPLEX array, dimension (LDS,N) */
 | 
						|
/* >          The upper triangular matrix S from a generalized Schur */
 | 
						|
/* >          factorization, as computed by CHGEQZ. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDS is INTEGER */
 | 
						|
/* >          The leading dimension of array S.  LDS >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] P */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          P is COMPLEX array, dimension (LDP,N) */
 | 
						|
/* >          The upper triangular matrix P from a generalized Schur */
 | 
						|
/* >          factorization, as computed by CHGEQZ.  P must have real */
 | 
						|
/* >          diagonal elements. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDP */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDP is INTEGER */
 | 
						|
/* >          The leading dimension of array P.  LDP >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] VL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VL is COMPLEX array, dimension (LDVL,MM) */
 | 
						|
/* >          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
 | 
						|
/* >          contain an N-by-N matrix Q (usually the unitary matrix Q */
 | 
						|
/* >          of left Schur vectors returned by CHGEQZ). */
 | 
						|
/* >          On exit, if SIDE = 'L' or 'B', VL contains: */
 | 
						|
/* >          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); */
 | 
						|
/* >          if HOWMNY = 'B', the matrix Q*Y; */
 | 
						|
/* >          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by */
 | 
						|
/* >                      SELECT, stored consecutively in the columns of */
 | 
						|
/* >                      VL, in the same order as their eigenvalues. */
 | 
						|
/* >          Not referenced if SIDE = 'R'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVL is INTEGER */
 | 
						|
/* >          The leading dimension of array VL.  LDVL >= 1, and if */
 | 
						|
/* >          SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] VR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VR is COMPLEX array, dimension (LDVR,MM) */
 | 
						|
/* >          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
 | 
						|
/* >          contain an N-by-N matrix Q (usually the unitary matrix Z */
 | 
						|
/* >          of right Schur vectors returned by CHGEQZ). */
 | 
						|
/* >          On exit, if SIDE = 'R' or 'B', VR contains: */
 | 
						|
/* >          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); */
 | 
						|
/* >          if HOWMNY = 'B', the matrix Z*X; */
 | 
						|
/* >          if HOWMNY = 'S', the right eigenvectors of (S,P) specified by */
 | 
						|
/* >                      SELECT, stored consecutively in the columns of */
 | 
						|
/* >                      VR, in the same order as their eigenvalues. */
 | 
						|
/* >          Not referenced if SIDE = 'L'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVR is INTEGER */
 | 
						|
/* >          The leading dimension of the array VR.  LDVR >= 1, and if */
 | 
						|
/* >          SIDE = 'R' or 'B', LDVR >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] MM */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          MM is INTEGER */
 | 
						|
/* >          The number of columns in the arrays VL and/or VR. MM >= M. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The number of columns in the arrays VL and/or VR actually */
 | 
						|
/* >          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M */
 | 
						|
/* >          is set to N.  Each selected eigenvector occupies one column. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is COMPLEX array, dimension (2*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RWORK is REAL array, dimension (2*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit. */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexGEcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int ctgevc_(char *side, char *howmny, logical *select, 
 | 
						|
	integer *n, complex *s, integer *lds, complex *p, integer *ldp, 
 | 
						|
	complex *vl, integer *ldvl, complex *vr, integer *ldvr, integer *mm, 
 | 
						|
	integer *m, complex *work, real *rwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer p_dim1, p_offset, s_dim1, s_offset, vl_dim1, vl_offset, vr_dim1, 
 | 
						|
	    vr_offset, i__1, i__2, i__3, i__4, i__5;
 | 
						|
    real r__1, r__2, r__3, r__4, r__5, r__6;
 | 
						|
    complex q__1, q__2, q__3, q__4;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer ibeg, ieig, iend;
 | 
						|
    real dmin__;
 | 
						|
    integer isrc;
 | 
						|
    real temp;
 | 
						|
    complex suma, sumb;
 | 
						|
    real xmax;
 | 
						|
    complex d__;
 | 
						|
    integer i__, j;
 | 
						|
    real scale;
 | 
						|
    logical ilall;
 | 
						|
    integer iside;
 | 
						|
    real sbeta;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
 | 
						|
	    , complex *, integer *, complex *, integer *, complex *, complex *
 | 
						|
	    , integer *);
 | 
						|
    real small;
 | 
						|
    logical compl;
 | 
						|
    real anorm, bnorm;
 | 
						|
    logical compr;
 | 
						|
    complex ca, cb;
 | 
						|
    logical ilbbad;
 | 
						|
    real acoefa;
 | 
						|
    integer je;
 | 
						|
    real bcoefa, acoeff;
 | 
						|
    complex bcoeff;
 | 
						|
    logical ilback;
 | 
						|
    integer im;
 | 
						|
    extern /* Subroutine */ int slabad_(real *, real *);
 | 
						|
    real ascale, bscale;
 | 
						|
    integer jr;
 | 
						|
    extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
 | 
						|
    extern real slamch_(char *);
 | 
						|
    complex salpha;
 | 
						|
    real safmin;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    real bignum;
 | 
						|
    logical ilcomp;
 | 
						|
    integer ihwmny;
 | 
						|
    real big;
 | 
						|
    logical lsa, lsb;
 | 
						|
    real ulp;
 | 
						|
    complex sum;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Decode and Test the input parameters */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --select;
 | 
						|
    s_dim1 = *lds;
 | 
						|
    s_offset = 1 + s_dim1 * 1;
 | 
						|
    s -= s_offset;
 | 
						|
    p_dim1 = *ldp;
 | 
						|
    p_offset = 1 + p_dim1 * 1;
 | 
						|
    p -= p_offset;
 | 
						|
    vl_dim1 = *ldvl;
 | 
						|
    vl_offset = 1 + vl_dim1 * 1;
 | 
						|
    vl -= vl_offset;
 | 
						|
    vr_dim1 = *ldvr;
 | 
						|
    vr_offset = 1 + vr_dim1 * 1;
 | 
						|
    vr -= vr_offset;
 | 
						|
    --work;
 | 
						|
    --rwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (lsame_(howmny, "A")) {
 | 
						|
	ihwmny = 1;
 | 
						|
	ilall = TRUE_;
 | 
						|
	ilback = FALSE_;
 | 
						|
    } else if (lsame_(howmny, "S")) {
 | 
						|
	ihwmny = 2;
 | 
						|
	ilall = FALSE_;
 | 
						|
	ilback = FALSE_;
 | 
						|
    } else if (lsame_(howmny, "B")) {
 | 
						|
	ihwmny = 3;
 | 
						|
	ilall = TRUE_;
 | 
						|
	ilback = TRUE_;
 | 
						|
    } else {
 | 
						|
	ihwmny = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(side, "R")) {
 | 
						|
	iside = 1;
 | 
						|
	compl = FALSE_;
 | 
						|
	compr = TRUE_;
 | 
						|
    } else if (lsame_(side, "L")) {
 | 
						|
	iside = 2;
 | 
						|
	compl = TRUE_;
 | 
						|
	compr = FALSE_;
 | 
						|
    } else if (lsame_(side, "B")) {
 | 
						|
	iside = 3;
 | 
						|
	compl = TRUE_;
 | 
						|
	compr = TRUE_;
 | 
						|
    } else {
 | 
						|
	iside = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    if (iside < 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (ihwmny < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*lds < f2cmax(1,*n)) {
 | 
						|
	*info = -6;
 | 
						|
    } else if (*ldp < f2cmax(1,*n)) {
 | 
						|
	*info = -8;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CTGEVC", &i__1, (ftnlen)6);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Count the number of eigenvectors */
 | 
						|
 | 
						|
    if (! ilall) {
 | 
						|
	im = 0;
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    if (select[j]) {
 | 
						|
		++im;
 | 
						|
	    }
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	im = *n;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Check diagonal of B */
 | 
						|
 | 
						|
    ilbbad = FALSE_;
 | 
						|
    i__1 = *n;
 | 
						|
    for (j = 1; j <= i__1; ++j) {
 | 
						|
	if (r_imag(&p[j + j * p_dim1]) != 0.f) {
 | 
						|
	    ilbbad = TRUE_;
 | 
						|
	}
 | 
						|
/* L20: */
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilbbad) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (compl && *ldvl < *n || *ldvl < 1) {
 | 
						|
	*info = -10;
 | 
						|
    } else if (compr && *ldvr < *n || *ldvr < 1) {
 | 
						|
	*info = -12;
 | 
						|
    } else if (*mm < im) {
 | 
						|
	*info = -13;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CTGEVC", &i__1, (ftnlen)6);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    *m = im;
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Machine Constants */
 | 
						|
 | 
						|
    safmin = slamch_("Safe minimum");
 | 
						|
    big = 1.f / safmin;
 | 
						|
    slabad_(&safmin, &big);
 | 
						|
    ulp = slamch_("Epsilon") * slamch_("Base");
 | 
						|
    small = safmin * *n / ulp;
 | 
						|
    big = 1.f / small;
 | 
						|
    bignum = 1.f / (safmin * *n);
 | 
						|
 | 
						|
/*     Compute the 1-norm of each column of the strictly upper triangular */
 | 
						|
/*     part of A and B to check for possible overflow in the triangular */
 | 
						|
/*     solver. */
 | 
						|
 | 
						|
    i__1 = s_dim1 + 1;
 | 
						|
    anorm = (r__1 = s[i__1].r, abs(r__1)) + (r__2 = r_imag(&s[s_dim1 + 1]), 
 | 
						|
	    abs(r__2));
 | 
						|
    i__1 = p_dim1 + 1;
 | 
						|
    bnorm = (r__1 = p[i__1].r, abs(r__1)) + (r__2 = r_imag(&p[p_dim1 + 1]), 
 | 
						|
	    abs(r__2));
 | 
						|
    rwork[1] = 0.f;
 | 
						|
    rwork[*n + 1] = 0.f;
 | 
						|
    i__1 = *n;
 | 
						|
    for (j = 2; j <= i__1; ++j) {
 | 
						|
	rwork[j] = 0.f;
 | 
						|
	rwork[*n + j] = 0.f;
 | 
						|
	i__2 = j - 1;
 | 
						|
	for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
	    i__3 = i__ + j * s_dim1;
 | 
						|
	    rwork[j] += (r__1 = s[i__3].r, abs(r__1)) + (r__2 = r_imag(&s[i__ 
 | 
						|
		    + j * s_dim1]), abs(r__2));
 | 
						|
	    i__3 = i__ + j * p_dim1;
 | 
						|
	    rwork[*n + j] += (r__1 = p[i__3].r, abs(r__1)) + (r__2 = r_imag(&
 | 
						|
		    p[i__ + j * p_dim1]), abs(r__2));
 | 
						|
/* L30: */
 | 
						|
	}
 | 
						|
/* Computing MAX */
 | 
						|
	i__2 = j + j * s_dim1;
 | 
						|
	r__3 = anorm, r__4 = rwork[j] + ((r__1 = s[i__2].r, abs(r__1)) + (
 | 
						|
		r__2 = r_imag(&s[j + j * s_dim1]), abs(r__2)));
 | 
						|
	anorm = f2cmax(r__3,r__4);
 | 
						|
/* Computing MAX */
 | 
						|
	i__2 = j + j * p_dim1;
 | 
						|
	r__3 = bnorm, r__4 = rwork[*n + j] + ((r__1 = p[i__2].r, abs(r__1)) + 
 | 
						|
		(r__2 = r_imag(&p[j + j * p_dim1]), abs(r__2)));
 | 
						|
	bnorm = f2cmax(r__3,r__4);
 | 
						|
/* L40: */
 | 
						|
    }
 | 
						|
 | 
						|
    ascale = 1.f / f2cmax(anorm,safmin);
 | 
						|
    bscale = 1.f / f2cmax(bnorm,safmin);
 | 
						|
 | 
						|
/*     Left eigenvectors */
 | 
						|
 | 
						|
    if (compl) {
 | 
						|
	ieig = 0;
 | 
						|
 | 
						|
/*        Main loop over eigenvalues */
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (je = 1; je <= i__1; ++je) {
 | 
						|
	    if (ilall) {
 | 
						|
		ilcomp = TRUE_;
 | 
						|
	    } else {
 | 
						|
		ilcomp = select[je];
 | 
						|
	    }
 | 
						|
	    if (ilcomp) {
 | 
						|
		++ieig;
 | 
						|
 | 
						|
		i__2 = je + je * s_dim1;
 | 
						|
		i__3 = je + je * p_dim1;
 | 
						|
		if ((r__2 = s[i__2].r, abs(r__2)) + (r__3 = r_imag(&s[je + je 
 | 
						|
			* s_dim1]), abs(r__3)) <= safmin && (r__1 = p[i__3].r,
 | 
						|
			 abs(r__1)) <= safmin) {
 | 
						|
 | 
						|
/*                 Singular matrix pencil -- return unit eigenvector */
 | 
						|
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
			i__3 = jr + ieig * vl_dim1;
 | 
						|
			vl[i__3].r = 0.f, vl[i__3].i = 0.f;
 | 
						|
/* L50: */
 | 
						|
		    }
 | 
						|
		    i__2 = ieig + ieig * vl_dim1;
 | 
						|
		    vl[i__2].r = 1.f, vl[i__2].i = 0.f;
 | 
						|
		    goto L140;
 | 
						|
		}
 | 
						|
 | 
						|
/*              Non-singular eigenvalue: */
 | 
						|
/*              Compute coefficients  a  and  b  in */
 | 
						|
/*                   H */
 | 
						|
/*                 y  ( a A - b B ) = 0 */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
		i__2 = je + je * s_dim1;
 | 
						|
		i__3 = je + je * p_dim1;
 | 
						|
		r__4 = ((r__2 = s[i__2].r, abs(r__2)) + (r__3 = r_imag(&s[je 
 | 
						|
			+ je * s_dim1]), abs(r__3))) * ascale, r__5 = (r__1 = 
 | 
						|
			p[i__3].r, abs(r__1)) * bscale, r__4 = f2cmax(r__4,r__5);
 | 
						|
		temp = 1.f / f2cmax(r__4,safmin);
 | 
						|
		i__2 = je + je * s_dim1;
 | 
						|
		q__2.r = temp * s[i__2].r, q__2.i = temp * s[i__2].i;
 | 
						|
		q__1.r = ascale * q__2.r, q__1.i = ascale * q__2.i;
 | 
						|
		salpha.r = q__1.r, salpha.i = q__1.i;
 | 
						|
		i__2 = je + je * p_dim1;
 | 
						|
		sbeta = temp * p[i__2].r * bscale;
 | 
						|
		acoeff = sbeta * ascale;
 | 
						|
		q__1.r = bscale * salpha.r, q__1.i = bscale * salpha.i;
 | 
						|
		bcoeff.r = q__1.r, bcoeff.i = q__1.i;
 | 
						|
 | 
						|
/*              Scale to avoid underflow */
 | 
						|
 | 
						|
		lsa = abs(sbeta) >= safmin && abs(acoeff) < small;
 | 
						|
		lsb = (r__1 = salpha.r, abs(r__1)) + (r__2 = r_imag(&salpha), 
 | 
						|
			abs(r__2)) >= safmin && (r__3 = bcoeff.r, abs(r__3)) 
 | 
						|
			+ (r__4 = r_imag(&bcoeff), abs(r__4)) < small;
 | 
						|
 | 
						|
		scale = 1.f;
 | 
						|
		if (lsa) {
 | 
						|
		    scale = small / abs(sbeta) * f2cmin(anorm,big);
 | 
						|
		}
 | 
						|
		if (lsb) {
 | 
						|
/* Computing MAX */
 | 
						|
		    r__3 = scale, r__4 = small / ((r__1 = salpha.r, abs(r__1))
 | 
						|
			     + (r__2 = r_imag(&salpha), abs(r__2))) * f2cmin(
 | 
						|
			    bnorm,big);
 | 
						|
		    scale = f2cmax(r__3,r__4);
 | 
						|
		}
 | 
						|
		if (lsa || lsb) {
 | 
						|
/* Computing MIN */
 | 
						|
/* Computing MAX */
 | 
						|
		    r__5 = 1.f, r__6 = abs(acoeff), r__5 = f2cmax(r__5,r__6), 
 | 
						|
			    r__6 = (r__1 = bcoeff.r, abs(r__1)) + (r__2 = 
 | 
						|
			    r_imag(&bcoeff), abs(r__2));
 | 
						|
		    r__3 = scale, r__4 = 1.f / (safmin * f2cmax(r__5,r__6));
 | 
						|
		    scale = f2cmin(r__3,r__4);
 | 
						|
		    if (lsa) {
 | 
						|
			acoeff = ascale * (scale * sbeta);
 | 
						|
		    } else {
 | 
						|
			acoeff = scale * acoeff;
 | 
						|
		    }
 | 
						|
		    if (lsb) {
 | 
						|
			q__2.r = scale * salpha.r, q__2.i = scale * salpha.i;
 | 
						|
			q__1.r = bscale * q__2.r, q__1.i = bscale * q__2.i;
 | 
						|
			bcoeff.r = q__1.r, bcoeff.i = q__1.i;
 | 
						|
		    } else {
 | 
						|
			q__1.r = scale * bcoeff.r, q__1.i = scale * bcoeff.i;
 | 
						|
			bcoeff.r = q__1.r, bcoeff.i = q__1.i;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
		acoefa = abs(acoeff);
 | 
						|
		bcoefa = (r__1 = bcoeff.r, abs(r__1)) + (r__2 = r_imag(&
 | 
						|
			bcoeff), abs(r__2));
 | 
						|
		xmax = 1.f;
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    i__3 = jr;
 | 
						|
		    work[i__3].r = 0.f, work[i__3].i = 0.f;
 | 
						|
/* L60: */
 | 
						|
		}
 | 
						|
		i__2 = je;
 | 
						|
		work[i__2].r = 1.f, work[i__2].i = 0.f;
 | 
						|
/* Computing MAX */
 | 
						|
		r__1 = ulp * acoefa * anorm, r__2 = ulp * bcoefa * bnorm, 
 | 
						|
			r__1 = f2cmax(r__1,r__2);
 | 
						|
		dmin__ = f2cmax(r__1,safmin);
 | 
						|
 | 
						|
/*                                              H */
 | 
						|
/*              Triangular solve of  (a A - b B)  y = 0 */
 | 
						|
 | 
						|
/*                                      H */
 | 
						|
/*              (rowwise in  (a A - b B) , or columnwise in a A - b B) */
 | 
						|
 | 
						|
		i__2 = *n;
 | 
						|
		for (j = je + 1; j <= i__2; ++j) {
 | 
						|
 | 
						|
/*                 Compute */
 | 
						|
/*                       j-1 */
 | 
						|
/*                 SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k) */
 | 
						|
/*                       k=je */
 | 
						|
/*                 (Scale if necessary) */
 | 
						|
 | 
						|
		    temp = 1.f / xmax;
 | 
						|
		    if (acoefa * rwork[j] + bcoefa * rwork[*n + j] > bignum * 
 | 
						|
			    temp) {
 | 
						|
			i__3 = j - 1;
 | 
						|
			for (jr = je; jr <= i__3; ++jr) {
 | 
						|
			    i__4 = jr;
 | 
						|
			    i__5 = jr;
 | 
						|
			    q__1.r = temp * work[i__5].r, q__1.i = temp * 
 | 
						|
				    work[i__5].i;
 | 
						|
			    work[i__4].r = q__1.r, work[i__4].i = q__1.i;
 | 
						|
/* L70: */
 | 
						|
			}
 | 
						|
			xmax = 1.f;
 | 
						|
		    }
 | 
						|
		    suma.r = 0.f, suma.i = 0.f;
 | 
						|
		    sumb.r = 0.f, sumb.i = 0.f;
 | 
						|
 | 
						|
		    i__3 = j - 1;
 | 
						|
		    for (jr = je; jr <= i__3; ++jr) {
 | 
						|
			r_cnjg(&q__3, &s[jr + j * s_dim1]);
 | 
						|
			i__4 = jr;
 | 
						|
			q__2.r = q__3.r * work[i__4].r - q__3.i * work[i__4]
 | 
						|
				.i, q__2.i = q__3.r * work[i__4].i + q__3.i * 
 | 
						|
				work[i__4].r;
 | 
						|
			q__1.r = suma.r + q__2.r, q__1.i = suma.i + q__2.i;
 | 
						|
			suma.r = q__1.r, suma.i = q__1.i;
 | 
						|
			r_cnjg(&q__3, &p[jr + j * p_dim1]);
 | 
						|
			i__4 = jr;
 | 
						|
			q__2.r = q__3.r * work[i__4].r - q__3.i * work[i__4]
 | 
						|
				.i, q__2.i = q__3.r * work[i__4].i + q__3.i * 
 | 
						|
				work[i__4].r;
 | 
						|
			q__1.r = sumb.r + q__2.r, q__1.i = sumb.i + q__2.i;
 | 
						|
			sumb.r = q__1.r, sumb.i = q__1.i;
 | 
						|
/* L80: */
 | 
						|
		    }
 | 
						|
		    q__2.r = acoeff * suma.r, q__2.i = acoeff * suma.i;
 | 
						|
		    r_cnjg(&q__4, &bcoeff);
 | 
						|
		    q__3.r = q__4.r * sumb.r - q__4.i * sumb.i, q__3.i = 
 | 
						|
			    q__4.r * sumb.i + q__4.i * sumb.r;
 | 
						|
		    q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
 | 
						|
		    sum.r = q__1.r, sum.i = q__1.i;
 | 
						|
 | 
						|
/*                 Form x(j) = - SUM / conjg( a*S(j,j) - b*P(j,j) ) */
 | 
						|
 | 
						|
/*                 with scaling and perturbation of the denominator */
 | 
						|
 | 
						|
		    i__3 = j + j * s_dim1;
 | 
						|
		    q__3.r = acoeff * s[i__3].r, q__3.i = acoeff * s[i__3].i;
 | 
						|
		    i__4 = j + j * p_dim1;
 | 
						|
		    q__4.r = bcoeff.r * p[i__4].r - bcoeff.i * p[i__4].i, 
 | 
						|
			    q__4.i = bcoeff.r * p[i__4].i + bcoeff.i * p[i__4]
 | 
						|
			    .r;
 | 
						|
		    q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
 | 
						|
		    r_cnjg(&q__1, &q__2);
 | 
						|
		    d__.r = q__1.r, d__.i = q__1.i;
 | 
						|
		    if ((r__1 = d__.r, abs(r__1)) + (r__2 = r_imag(&d__), abs(
 | 
						|
			    r__2)) <= dmin__) {
 | 
						|
			q__1.r = dmin__, q__1.i = 0.f;
 | 
						|
			d__.r = q__1.r, d__.i = q__1.i;
 | 
						|
		    }
 | 
						|
 | 
						|
		    if ((r__1 = d__.r, abs(r__1)) + (r__2 = r_imag(&d__), abs(
 | 
						|
			    r__2)) < 1.f) {
 | 
						|
			if ((r__1 = sum.r, abs(r__1)) + (r__2 = r_imag(&sum), 
 | 
						|
				abs(r__2)) >= bignum * ((r__3 = d__.r, abs(
 | 
						|
				r__3)) + (r__4 = r_imag(&d__), abs(r__4)))) {
 | 
						|
			    temp = 1.f / ((r__1 = sum.r, abs(r__1)) + (r__2 = 
 | 
						|
				    r_imag(&sum), abs(r__2)));
 | 
						|
			    i__3 = j - 1;
 | 
						|
			    for (jr = je; jr <= i__3; ++jr) {
 | 
						|
				i__4 = jr;
 | 
						|
				i__5 = jr;
 | 
						|
				q__1.r = temp * work[i__5].r, q__1.i = temp * 
 | 
						|
					work[i__5].i;
 | 
						|
				work[i__4].r = q__1.r, work[i__4].i = q__1.i;
 | 
						|
/* L90: */
 | 
						|
			    }
 | 
						|
			    xmax = temp * xmax;
 | 
						|
			    q__1.r = temp * sum.r, q__1.i = temp * sum.i;
 | 
						|
			    sum.r = q__1.r, sum.i = q__1.i;
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		    i__3 = j;
 | 
						|
		    q__2.r = -sum.r, q__2.i = -sum.i;
 | 
						|
		    cladiv_(&q__1, &q__2, &d__);
 | 
						|
		    work[i__3].r = q__1.r, work[i__3].i = q__1.i;
 | 
						|
/* Computing MAX */
 | 
						|
		    i__3 = j;
 | 
						|
		    r__3 = xmax, r__4 = (r__1 = work[i__3].r, abs(r__1)) + (
 | 
						|
			    r__2 = r_imag(&work[j]), abs(r__2));
 | 
						|
		    xmax = f2cmax(r__3,r__4);
 | 
						|
/* L100: */
 | 
						|
		}
 | 
						|
 | 
						|
/*              Back transform eigenvector if HOWMNY='B'. */
 | 
						|
 | 
						|
		if (ilback) {
 | 
						|
		    i__2 = *n + 1 - je;
 | 
						|
		    cgemv_("N", n, &i__2, &c_b2, &vl[je * vl_dim1 + 1], ldvl, 
 | 
						|
			    &work[je], &c__1, &c_b1, &work[*n + 1], &c__1);
 | 
						|
		    isrc = 2;
 | 
						|
		    ibeg = 1;
 | 
						|
		} else {
 | 
						|
		    isrc = 1;
 | 
						|
		    ibeg = je;
 | 
						|
		}
 | 
						|
 | 
						|
/*              Copy and scale eigenvector into column of VL */
 | 
						|
 | 
						|
		xmax = 0.f;
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = ibeg; jr <= i__2; ++jr) {
 | 
						|
/* Computing MAX */
 | 
						|
		    i__3 = (isrc - 1) * *n + jr;
 | 
						|
		    r__3 = xmax, r__4 = (r__1 = work[i__3].r, abs(r__1)) + (
 | 
						|
			    r__2 = r_imag(&work[(isrc - 1) * *n + jr]), abs(
 | 
						|
			    r__2));
 | 
						|
		    xmax = f2cmax(r__3,r__4);
 | 
						|
/* L110: */
 | 
						|
		}
 | 
						|
 | 
						|
		if (xmax > safmin) {
 | 
						|
		    temp = 1.f / xmax;
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (jr = ibeg; jr <= i__2; ++jr) {
 | 
						|
			i__3 = jr + ieig * vl_dim1;
 | 
						|
			i__4 = (isrc - 1) * *n + jr;
 | 
						|
			q__1.r = temp * work[i__4].r, q__1.i = temp * work[
 | 
						|
				i__4].i;
 | 
						|
			vl[i__3].r = q__1.r, vl[i__3].i = q__1.i;
 | 
						|
/* L120: */
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    ibeg = *n + 1;
 | 
						|
		}
 | 
						|
 | 
						|
		i__2 = ibeg - 1;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    i__3 = jr + ieig * vl_dim1;
 | 
						|
		    vl[i__3].r = 0.f, vl[i__3].i = 0.f;
 | 
						|
/* L130: */
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
L140:
 | 
						|
	    ;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Right eigenvectors */
 | 
						|
 | 
						|
    if (compr) {
 | 
						|
	ieig = im + 1;
 | 
						|
 | 
						|
/*        Main loop over eigenvalues */
 | 
						|
 | 
						|
	for (je = *n; je >= 1; --je) {
 | 
						|
	    if (ilall) {
 | 
						|
		ilcomp = TRUE_;
 | 
						|
	    } else {
 | 
						|
		ilcomp = select[je];
 | 
						|
	    }
 | 
						|
	    if (ilcomp) {
 | 
						|
		--ieig;
 | 
						|
 | 
						|
		i__1 = je + je * s_dim1;
 | 
						|
		i__2 = je + je * p_dim1;
 | 
						|
		if ((r__2 = s[i__1].r, abs(r__2)) + (r__3 = r_imag(&s[je + je 
 | 
						|
			* s_dim1]), abs(r__3)) <= safmin && (r__1 = p[i__2].r,
 | 
						|
			 abs(r__1)) <= safmin) {
 | 
						|
 | 
						|
/*                 Singular matrix pencil -- return unit eigenvector */
 | 
						|
 | 
						|
		    i__1 = *n;
 | 
						|
		    for (jr = 1; jr <= i__1; ++jr) {
 | 
						|
			i__2 = jr + ieig * vr_dim1;
 | 
						|
			vr[i__2].r = 0.f, vr[i__2].i = 0.f;
 | 
						|
/* L150: */
 | 
						|
		    }
 | 
						|
		    i__1 = ieig + ieig * vr_dim1;
 | 
						|
		    vr[i__1].r = 1.f, vr[i__1].i = 0.f;
 | 
						|
		    goto L250;
 | 
						|
		}
 | 
						|
 | 
						|
/*              Non-singular eigenvalue: */
 | 
						|
/*              Compute coefficients  a  and  b  in */
 | 
						|
 | 
						|
/*              ( a A - b B ) x  = 0 */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = je + je * s_dim1;
 | 
						|
		i__2 = je + je * p_dim1;
 | 
						|
		r__4 = ((r__2 = s[i__1].r, abs(r__2)) + (r__3 = r_imag(&s[je 
 | 
						|
			+ je * s_dim1]), abs(r__3))) * ascale, r__5 = (r__1 = 
 | 
						|
			p[i__2].r, abs(r__1)) * bscale, r__4 = f2cmax(r__4,r__5);
 | 
						|
		temp = 1.f / f2cmax(r__4,safmin);
 | 
						|
		i__1 = je + je * s_dim1;
 | 
						|
		q__2.r = temp * s[i__1].r, q__2.i = temp * s[i__1].i;
 | 
						|
		q__1.r = ascale * q__2.r, q__1.i = ascale * q__2.i;
 | 
						|
		salpha.r = q__1.r, salpha.i = q__1.i;
 | 
						|
		i__1 = je + je * p_dim1;
 | 
						|
		sbeta = temp * p[i__1].r * bscale;
 | 
						|
		acoeff = sbeta * ascale;
 | 
						|
		q__1.r = bscale * salpha.r, q__1.i = bscale * salpha.i;
 | 
						|
		bcoeff.r = q__1.r, bcoeff.i = q__1.i;
 | 
						|
 | 
						|
/*              Scale to avoid underflow */
 | 
						|
 | 
						|
		lsa = abs(sbeta) >= safmin && abs(acoeff) < small;
 | 
						|
		lsb = (r__1 = salpha.r, abs(r__1)) + (r__2 = r_imag(&salpha), 
 | 
						|
			abs(r__2)) >= safmin && (r__3 = bcoeff.r, abs(r__3)) 
 | 
						|
			+ (r__4 = r_imag(&bcoeff), abs(r__4)) < small;
 | 
						|
 | 
						|
		scale = 1.f;
 | 
						|
		if (lsa) {
 | 
						|
		    scale = small / abs(sbeta) * f2cmin(anorm,big);
 | 
						|
		}
 | 
						|
		if (lsb) {
 | 
						|
/* Computing MAX */
 | 
						|
		    r__3 = scale, r__4 = small / ((r__1 = salpha.r, abs(r__1))
 | 
						|
			     + (r__2 = r_imag(&salpha), abs(r__2))) * f2cmin(
 | 
						|
			    bnorm,big);
 | 
						|
		    scale = f2cmax(r__3,r__4);
 | 
						|
		}
 | 
						|
		if (lsa || lsb) {
 | 
						|
/* Computing MIN */
 | 
						|
/* Computing MAX */
 | 
						|
		    r__5 = 1.f, r__6 = abs(acoeff), r__5 = f2cmax(r__5,r__6), 
 | 
						|
			    r__6 = (r__1 = bcoeff.r, abs(r__1)) + (r__2 = 
 | 
						|
			    r_imag(&bcoeff), abs(r__2));
 | 
						|
		    r__3 = scale, r__4 = 1.f / (safmin * f2cmax(r__5,r__6));
 | 
						|
		    scale = f2cmin(r__3,r__4);
 | 
						|
		    if (lsa) {
 | 
						|
			acoeff = ascale * (scale * sbeta);
 | 
						|
		    } else {
 | 
						|
			acoeff = scale * acoeff;
 | 
						|
		    }
 | 
						|
		    if (lsb) {
 | 
						|
			q__2.r = scale * salpha.r, q__2.i = scale * salpha.i;
 | 
						|
			q__1.r = bscale * q__2.r, q__1.i = bscale * q__2.i;
 | 
						|
			bcoeff.r = q__1.r, bcoeff.i = q__1.i;
 | 
						|
		    } else {
 | 
						|
			q__1.r = scale * bcoeff.r, q__1.i = scale * bcoeff.i;
 | 
						|
			bcoeff.r = q__1.r, bcoeff.i = q__1.i;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
		acoefa = abs(acoeff);
 | 
						|
		bcoefa = (r__1 = bcoeff.r, abs(r__1)) + (r__2 = r_imag(&
 | 
						|
			bcoeff), abs(r__2));
 | 
						|
		xmax = 1.f;
 | 
						|
		i__1 = *n;
 | 
						|
		for (jr = 1; jr <= i__1; ++jr) {
 | 
						|
		    i__2 = jr;
 | 
						|
		    work[i__2].r = 0.f, work[i__2].i = 0.f;
 | 
						|
/* L160: */
 | 
						|
		}
 | 
						|
		i__1 = je;
 | 
						|
		work[i__1].r = 1.f, work[i__1].i = 0.f;
 | 
						|
/* Computing MAX */
 | 
						|
		r__1 = ulp * acoefa * anorm, r__2 = ulp * bcoefa * bnorm, 
 | 
						|
			r__1 = f2cmax(r__1,r__2);
 | 
						|
		dmin__ = f2cmax(r__1,safmin);
 | 
						|
 | 
						|
/*              Triangular solve of  (a A - b B) x = 0  (columnwise) */
 | 
						|
 | 
						|
/*              WORK(1:j-1) contains sums w, */
 | 
						|
/*              WORK(j+1:JE) contains x */
 | 
						|
 | 
						|
		i__1 = je - 1;
 | 
						|
		for (jr = 1; jr <= i__1; ++jr) {
 | 
						|
		    i__2 = jr;
 | 
						|
		    i__3 = jr + je * s_dim1;
 | 
						|
		    q__2.r = acoeff * s[i__3].r, q__2.i = acoeff * s[i__3].i;
 | 
						|
		    i__4 = jr + je * p_dim1;
 | 
						|
		    q__3.r = bcoeff.r * p[i__4].r - bcoeff.i * p[i__4].i, 
 | 
						|
			    q__3.i = bcoeff.r * p[i__4].i + bcoeff.i * p[i__4]
 | 
						|
			    .r;
 | 
						|
		    q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
 | 
						|
		    work[i__2].r = q__1.r, work[i__2].i = q__1.i;
 | 
						|
/* L170: */
 | 
						|
		}
 | 
						|
		i__1 = je;
 | 
						|
		work[i__1].r = 1.f, work[i__1].i = 0.f;
 | 
						|
 | 
						|
		for (j = je - 1; j >= 1; --j) {
 | 
						|
 | 
						|
/*                 Form x(j) := - w(j) / d */
 | 
						|
/*                 with scaling and perturbation of the denominator */
 | 
						|
 | 
						|
		    i__1 = j + j * s_dim1;
 | 
						|
		    q__2.r = acoeff * s[i__1].r, q__2.i = acoeff * s[i__1].i;
 | 
						|
		    i__2 = j + j * p_dim1;
 | 
						|
		    q__3.r = bcoeff.r * p[i__2].r - bcoeff.i * p[i__2].i, 
 | 
						|
			    q__3.i = bcoeff.r * p[i__2].i + bcoeff.i * p[i__2]
 | 
						|
			    .r;
 | 
						|
		    q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
 | 
						|
		    d__.r = q__1.r, d__.i = q__1.i;
 | 
						|
		    if ((r__1 = d__.r, abs(r__1)) + (r__2 = r_imag(&d__), abs(
 | 
						|
			    r__2)) <= dmin__) {
 | 
						|
			q__1.r = dmin__, q__1.i = 0.f;
 | 
						|
			d__.r = q__1.r, d__.i = q__1.i;
 | 
						|
		    }
 | 
						|
 | 
						|
		    if ((r__1 = d__.r, abs(r__1)) + (r__2 = r_imag(&d__), abs(
 | 
						|
			    r__2)) < 1.f) {
 | 
						|
			i__1 = j;
 | 
						|
			if ((r__1 = work[i__1].r, abs(r__1)) + (r__2 = r_imag(
 | 
						|
				&work[j]), abs(r__2)) >= bignum * ((r__3 = 
 | 
						|
				d__.r, abs(r__3)) + (r__4 = r_imag(&d__), abs(
 | 
						|
				r__4)))) {
 | 
						|
			    i__1 = j;
 | 
						|
			    temp = 1.f / ((r__1 = work[i__1].r, abs(r__1)) + (
 | 
						|
				    r__2 = r_imag(&work[j]), abs(r__2)));
 | 
						|
			    i__1 = je;
 | 
						|
			    for (jr = 1; jr <= i__1; ++jr) {
 | 
						|
				i__2 = jr;
 | 
						|
				i__3 = jr;
 | 
						|
				q__1.r = temp * work[i__3].r, q__1.i = temp * 
 | 
						|
					work[i__3].i;
 | 
						|
				work[i__2].r = q__1.r, work[i__2].i = q__1.i;
 | 
						|
/* L180: */
 | 
						|
			    }
 | 
						|
			}
 | 
						|
		    }
 | 
						|
 | 
						|
		    i__1 = j;
 | 
						|
		    i__2 = j;
 | 
						|
		    q__2.r = -work[i__2].r, q__2.i = -work[i__2].i;
 | 
						|
		    cladiv_(&q__1, &q__2, &d__);
 | 
						|
		    work[i__1].r = q__1.r, work[i__1].i = q__1.i;
 | 
						|
 | 
						|
		    if (j > 1) {
 | 
						|
 | 
						|
/*                    w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling */
 | 
						|
 | 
						|
			i__1 = j;
 | 
						|
			if ((r__1 = work[i__1].r, abs(r__1)) + (r__2 = r_imag(
 | 
						|
				&work[j]), abs(r__2)) > 1.f) {
 | 
						|
			    i__1 = j;
 | 
						|
			    temp = 1.f / ((r__1 = work[i__1].r, abs(r__1)) + (
 | 
						|
				    r__2 = r_imag(&work[j]), abs(r__2)));
 | 
						|
			    if (acoefa * rwork[j] + bcoefa * rwork[*n + j] >= 
 | 
						|
				    bignum * temp) {
 | 
						|
				i__1 = je;
 | 
						|
				for (jr = 1; jr <= i__1; ++jr) {
 | 
						|
				    i__2 = jr;
 | 
						|
				    i__3 = jr;
 | 
						|
				    q__1.r = temp * work[i__3].r, q__1.i = 
 | 
						|
					    temp * work[i__3].i;
 | 
						|
				    work[i__2].r = q__1.r, work[i__2].i = 
 | 
						|
					    q__1.i;
 | 
						|
/* L190: */
 | 
						|
				}
 | 
						|
			    }
 | 
						|
			}
 | 
						|
 | 
						|
			i__1 = j;
 | 
						|
			q__1.r = acoeff * work[i__1].r, q__1.i = acoeff * 
 | 
						|
				work[i__1].i;
 | 
						|
			ca.r = q__1.r, ca.i = q__1.i;
 | 
						|
			i__1 = j;
 | 
						|
			q__1.r = bcoeff.r * work[i__1].r - bcoeff.i * work[
 | 
						|
				i__1].i, q__1.i = bcoeff.r * work[i__1].i + 
 | 
						|
				bcoeff.i * work[i__1].r;
 | 
						|
			cb.r = q__1.r, cb.i = q__1.i;
 | 
						|
			i__1 = j - 1;
 | 
						|
			for (jr = 1; jr <= i__1; ++jr) {
 | 
						|
			    i__2 = jr;
 | 
						|
			    i__3 = jr;
 | 
						|
			    i__4 = jr + j * s_dim1;
 | 
						|
			    q__3.r = ca.r * s[i__4].r - ca.i * s[i__4].i, 
 | 
						|
				    q__3.i = ca.r * s[i__4].i + ca.i * s[i__4]
 | 
						|
				    .r;
 | 
						|
			    q__2.r = work[i__3].r + q__3.r, q__2.i = work[
 | 
						|
				    i__3].i + q__3.i;
 | 
						|
			    i__5 = jr + j * p_dim1;
 | 
						|
			    q__4.r = cb.r * p[i__5].r - cb.i * p[i__5].i, 
 | 
						|
				    q__4.i = cb.r * p[i__5].i + cb.i * p[i__5]
 | 
						|
				    .r;
 | 
						|
			    q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - 
 | 
						|
				    q__4.i;
 | 
						|
			    work[i__2].r = q__1.r, work[i__2].i = q__1.i;
 | 
						|
/* L200: */
 | 
						|
			}
 | 
						|
		    }
 | 
						|
/* L210: */
 | 
						|
		}
 | 
						|
 | 
						|
/*              Back transform eigenvector if HOWMNY='B'. */
 | 
						|
 | 
						|
		if (ilback) {
 | 
						|
		    cgemv_("N", n, &je, &c_b2, &vr[vr_offset], ldvr, &work[1],
 | 
						|
			     &c__1, &c_b1, &work[*n + 1], &c__1);
 | 
						|
		    isrc = 2;
 | 
						|
		    iend = *n;
 | 
						|
		} else {
 | 
						|
		    isrc = 1;
 | 
						|
		    iend = je;
 | 
						|
		}
 | 
						|
 | 
						|
/*              Copy and scale eigenvector into column of VR */
 | 
						|
 | 
						|
		xmax = 0.f;
 | 
						|
		i__1 = iend;
 | 
						|
		for (jr = 1; jr <= i__1; ++jr) {
 | 
						|
/* Computing MAX */
 | 
						|
		    i__2 = (isrc - 1) * *n + jr;
 | 
						|
		    r__3 = xmax, r__4 = (r__1 = work[i__2].r, abs(r__1)) + (
 | 
						|
			    r__2 = r_imag(&work[(isrc - 1) * *n + jr]), abs(
 | 
						|
			    r__2));
 | 
						|
		    xmax = f2cmax(r__3,r__4);
 | 
						|
/* L220: */
 | 
						|
		}
 | 
						|
 | 
						|
		if (xmax > safmin) {
 | 
						|
		    temp = 1.f / xmax;
 | 
						|
		    i__1 = iend;
 | 
						|
		    for (jr = 1; jr <= i__1; ++jr) {
 | 
						|
			i__2 = jr + ieig * vr_dim1;
 | 
						|
			i__3 = (isrc - 1) * *n + jr;
 | 
						|
			q__1.r = temp * work[i__3].r, q__1.i = temp * work[
 | 
						|
				i__3].i;
 | 
						|
			vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
 | 
						|
/* L230: */
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    iend = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		i__1 = *n;
 | 
						|
		for (jr = iend + 1; jr <= i__1; ++jr) {
 | 
						|
		    i__2 = jr + ieig * vr_dim1;
 | 
						|
		    vr[i__2].r = 0.f, vr[i__2].i = 0.f;
 | 
						|
/* L240: */
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
L250:
 | 
						|
	    ;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of CTGEVC */
 | 
						|
 | 
						|
} /* ctgevc_ */
 | 
						|
 |