310 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			310 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CSYTRS_AA
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CSYTRS_AA + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytrs_aa.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytrs_aa.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytrs_aa.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
 | 
						|
*                             WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            N, NRHS, LDA, LDB, LWORK, INFO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CSYTRS_AA solves a system of linear equations A*X = B with a complex
 | 
						|
*> symmetric matrix A using the factorization A = U**T*T*U or
 | 
						|
*> A = L*T*L**T computed by CSYTRF_AA.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the details of the factorization are stored
 | 
						|
*>          as an upper or lower triangular matrix.
 | 
						|
*>          = 'U':  Upper triangular, form is A = U**T*T*U;
 | 
						|
*>          = 'L':  Lower triangular, form is A = L*T*L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          Details of factors computed by CSYTRF_AA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          Details of the interchanges as computed by CSYTRF_AA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the right hand side matrix B.
 | 
						|
*>          On exit, the solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= max(1,3*N-2).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexSYcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
 | 
						|
     $                      WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            N, NRHS, LDA, LDB, LWORK, INFO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
      COMPLEX            ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, UPPER
 | 
						|
      INTEGER            K, KP, LWKOPT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLACPY, CGTSV, CSWAP, CTRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -10
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CSYTRS_AA', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         LWKOPT = (3*N-2)
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Solve A*X = B, where A = U**T*T*U.
 | 
						|
*
 | 
						|
*        1) Forward substitution with U**T
 | 
						|
*
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
*
 | 
						|
*           Pivot, P**T * B -> B
 | 
						|
*
 | 
						|
            DO K = 1, N
 | 
						|
               KP = IPIV( K )
 | 
						|
               IF( KP.NE.K )
 | 
						|
     $            CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            END DO
 | 
						|
*
 | 
						|
*           Compute U**T \ B -> B    [ (U**T \P**T * B) ]
 | 
						|
*
 | 
						|
            CALL CTRSM( 'L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ),
 | 
						|
     $                  LDA, B( 2, 1 ), LDB)
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        2) Solve with triangular matrix T
 | 
						|
*
 | 
						|
*        Compute T \ B -> B   [ T \ (U**T \P**T * B) ]
 | 
						|
*
 | 
						|
         CALL CLACPY( 'F', 1, N, A( 1, 1 ), LDA+1, WORK( N ), 1)
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
            CALL CLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 1 ), 1 )
 | 
						|
            CALL CLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 2*N ), 1 )
 | 
						|
         END IF
 | 
						|
         CALL CGTSV( N, NRHS, WORK( 1 ), WORK( N ), WORK( 2*N ), B, LDB,
 | 
						|
     $               INFO )
 | 
						|
*
 | 
						|
*        3) Backward substitution with U
 | 
						|
*
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
*
 | 
						|
*           Compute U \ B -> B   [ U \ (T \ (U**T \P**T * B) ) ]
 | 
						|
*
 | 
						|
            CALL CTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
 | 
						|
     $                  LDA, B( 2, 1 ), LDB)
 | 
						|
*
 | 
						|
*           Pivot, P * B -> B  [ P * (U**T \ (T \ (U \P**T * B) )) ]
 | 
						|
*
 | 
						|
            DO K = N, 1, -1
 | 
						|
               KP = IPIV( K )
 | 
						|
               IF( KP.NE.K )
 | 
						|
     $            CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Solve A*X = B, where A = L*T*L**T.
 | 
						|
*
 | 
						|
*        1) Forward substitution with L
 | 
						|
*
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
*
 | 
						|
*           Pivot, P**T * B -> B
 | 
						|
*
 | 
						|
            DO K = 1, N
 | 
						|
               KP = IPIV( K )
 | 
						|
               IF( KP.NE.K )
 | 
						|
     $            CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            END DO
 | 
						|
*
 | 
						|
*           Compute L \ B -> B    [ (L \P**T * B) ]
 | 
						|
*
 | 
						|
            CALL CTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ),
 | 
						|
     $                  LDA, B( 2, 1 ), LDB)
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        2) Solve with triangular matrix T
 | 
						|
*
 | 
						|
*
 | 
						|
*        Compute T \ B -> B   [ T \ (L \P**T * B) ]
 | 
						|
*
 | 
						|
         CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
            CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1 )
 | 
						|
            CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1 )
 | 
						|
         END IF
 | 
						|
         CALL CGTSV( N, NRHS, WORK( 1 ), WORK(N), WORK( 2*N ), B, LDB,
 | 
						|
     $               INFO)
 | 
						|
*
 | 
						|
*        3) Backward substitution with L**T
 | 
						|
*
 | 
						|
         IF( N.GT.1 ) THEN
 | 
						|
*
 | 
						|
*           Compute (L**T \ B) -> B   [ L**T \ (T \ (L \P**T * B) ) ]
 | 
						|
*
 | 
						|
            CALL CTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ),
 | 
						|
     $                  LDA, B( 2, 1 ), LDB)
 | 
						|
*
 | 
						|
*           Pivot, P * B -> B  [ P * (L**T \ (T \ (L \P**T * B) )) ]
 | 
						|
*
 | 
						|
            DO K = N, 1, -1
 | 
						|
               KP = IPIV( K )
 | 
						|
               IF( KP.NE.K )
 | 
						|
     $            CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CSYTRS_AA
 | 
						|
*
 | 
						|
      END
 |