946 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			946 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static complex c_b1 = {0.f,0.f};
 | 
						|
static complex c_b2 = {1.f,0.f};
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b CLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by us
 | 
						|
ing BLAS level 3. */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CLAQPS + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqps.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqps.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqps.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, */
 | 
						|
/*                          VN2, AUXV, F, LDF ) */
 | 
						|
 | 
						|
/*       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET */
 | 
						|
/*       INTEGER            JPVT( * ) */
 | 
						|
/*       REAL               VN1( * ), VN2( * ) */
 | 
						|
/*       COMPLEX            A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > CLAQPS computes a step of QR factorization with column pivoting */
 | 
						|
/* > of a complex M-by-N matrix A by using Blas-3.  It tries to factorize */
 | 
						|
/* > NB columns from A starting from the row OFFSET+1, and updates all */
 | 
						|
/* > of the matrix with Blas-3 xGEMM. */
 | 
						|
/* > */
 | 
						|
/* > In some cases, due to catastrophic cancellations, it cannot */
 | 
						|
/* > factorize NB columns.  Hence, the actual number of factorized */
 | 
						|
/* > columns is returned in KB. */
 | 
						|
/* > */
 | 
						|
/* > Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The number of rows of the matrix A. M >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The number of columns of the matrix A. N >= 0 */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] OFFSET */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          OFFSET is INTEGER */
 | 
						|
/* >          The number of rows of A that have been factorized in */
 | 
						|
/* >          previous steps. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NB is INTEGER */
 | 
						|
/* >          The number of columns to factorize. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] KB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          KB is INTEGER */
 | 
						|
/* >          The number of columns actually factorized. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX array, dimension (LDA,N) */
 | 
						|
/* >          On entry, the M-by-N matrix A. */
 | 
						|
/* >          On exit, block A(OFFSET+1:M,1:KB) is the triangular */
 | 
						|
/* >          factor obtained and block A(1:OFFSET,1:N) has been */
 | 
						|
/* >          accordingly pivoted, but no factorized. */
 | 
						|
/* >          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has */
 | 
						|
/* >          been updated. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A. LDA >= f2cmax(1,M). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] JPVT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JPVT is INTEGER array, dimension (N) */
 | 
						|
/* >          JPVT(I) = K <==> Column K of the full matrix A has been */
 | 
						|
/* >          permuted into position I in AP. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] TAU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TAU is COMPLEX array, dimension (KB) */
 | 
						|
/* >          The scalar factors of the elementary reflectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] VN1 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VN1 is REAL array, dimension (N) */
 | 
						|
/* >          The vector with the partial column norms. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] VN2 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VN2 is REAL array, dimension (N) */
 | 
						|
/* >          The vector with the exact column norms. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] AUXV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          AUXV is COMPLEX array, dimension (NB) */
 | 
						|
/* >          Auxiliary vector. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] F */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          F is COMPLEX array, dimension (LDF,NB) */
 | 
						|
/* >          Matrix  F**H = L * Y**H * A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDF */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDF is INTEGER */
 | 
						|
/* >          The leading dimension of the array F. LDF >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexOTHERauxiliary */
 | 
						|
 | 
						|
/* > \par Contributors: */
 | 
						|
/*  ================== */
 | 
						|
/* > */
 | 
						|
/* >    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
 | 
						|
/* >    X. Sun, Computer Science Dept., Duke University, USA */
 | 
						|
/* > */
 | 
						|
/* > \n */
 | 
						|
/* >  Partial column norm updating strategy modified on April 2011 */
 | 
						|
/* >    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
 | 
						|
/* >    University of Zagreb, Croatia. */
 | 
						|
 | 
						|
/* > \par References: */
 | 
						|
/*  ================ */
 | 
						|
/* > */
 | 
						|
/* > LAPACK Working Note 176 */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int claqps_(integer *m, integer *n, integer *offset, integer 
 | 
						|
	*nb, integer *kb, complex *a, integer *lda, integer *jpvt, complex *
 | 
						|
	tau, real *vn1, real *vn2, complex *auxv, complex *f, integer *ldf)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2, i__3;
 | 
						|
    real r__1, r__2;
 | 
						|
    complex q__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real temp, temp2;
 | 
						|
    integer j, k;
 | 
						|
    real tol3z;
 | 
						|
    extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, complex *, complex *, integer *, complex *, integer *, 
 | 
						|
	    complex *, complex *, integer *), cgemv_(char *, 
 | 
						|
	    integer *, integer *, complex *, complex *, integer *, complex *, 
 | 
						|
	    integer *, complex *, complex *, integer *), cswap_(
 | 
						|
	    integer *, complex *, integer *, complex *, integer *);
 | 
						|
    integer itemp;
 | 
						|
    extern real scnrm2_(integer *, complex *, integer *);
 | 
						|
    integer rk;
 | 
						|
    extern /* Subroutine */ int clarfg_(integer *, complex *, complex *, 
 | 
						|
	    integer *, complex *);
 | 
						|
    extern real slamch_(char *);
 | 
						|
    integer lsticc;
 | 
						|
    extern integer isamax_(integer *, real *, integer *);
 | 
						|
    integer lastrk;
 | 
						|
    complex akk;
 | 
						|
    integer pvt;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --jpvt;
 | 
						|
    --tau;
 | 
						|
    --vn1;
 | 
						|
    --vn2;
 | 
						|
    --auxv;
 | 
						|
    f_dim1 = *ldf;
 | 
						|
    f_offset = 1 + f_dim1 * 1;
 | 
						|
    f -= f_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
/* Computing MIN */
 | 
						|
    i__1 = *m, i__2 = *n + *offset;
 | 
						|
    lastrk = f2cmin(i__1,i__2);
 | 
						|
    lsticc = 0;
 | 
						|
    k = 0;
 | 
						|
    tol3z = sqrt(slamch_("Epsilon"));
 | 
						|
 | 
						|
/*     Beginning of while loop. */
 | 
						|
 | 
						|
L10:
 | 
						|
    if (k < *nb && lsticc == 0) {
 | 
						|
	++k;
 | 
						|
	rk = *offset + k;
 | 
						|
 | 
						|
/*        Determine ith pivot column and swap if necessary */
 | 
						|
 | 
						|
	i__1 = *n - k + 1;
 | 
						|
	pvt = k - 1 + isamax_(&i__1, &vn1[k], &c__1);
 | 
						|
	if (pvt != k) {
 | 
						|
	    cswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
 | 
						|
	    i__1 = k - 1;
 | 
						|
	    cswap_(&i__1, &f[pvt + f_dim1], ldf, &f[k + f_dim1], ldf);
 | 
						|
	    itemp = jpvt[pvt];
 | 
						|
	    jpvt[pvt] = jpvt[k];
 | 
						|
	    jpvt[k] = itemp;
 | 
						|
	    vn1[pvt] = vn1[k];
 | 
						|
	    vn2[pvt] = vn2[k];
 | 
						|
	}
 | 
						|
 | 
						|
/*        Apply previous Householder reflectors to column K: */
 | 
						|
/*        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**H. */
 | 
						|
 | 
						|
	if (k > 1) {
 | 
						|
	    i__1 = k - 1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = k + j * f_dim1;
 | 
						|
		r_cnjg(&q__1, &f[k + j * f_dim1]);
 | 
						|
		f[i__2].r = q__1.r, f[i__2].i = q__1.i;
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
	    i__1 = *m - rk + 1;
 | 
						|
	    i__2 = k - 1;
 | 
						|
	    q__1.r = -1.f, q__1.i = 0.f;
 | 
						|
	    cgemv_("No transpose", &i__1, &i__2, &q__1, &a[rk + a_dim1], lda, 
 | 
						|
		    &f[k + f_dim1], ldf, &c_b2, &a[rk + k * a_dim1], &c__1);
 | 
						|
	    i__1 = k - 1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = k + j * f_dim1;
 | 
						|
		r_cnjg(&q__1, &f[k + j * f_dim1]);
 | 
						|
		f[i__2].r = q__1.r, f[i__2].i = q__1.i;
 | 
						|
/* L30: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Generate elementary reflector H(k). */
 | 
						|
 | 
						|
	if (rk < *m) {
 | 
						|
	    i__1 = *m - rk + 1;
 | 
						|
	    clarfg_(&i__1, &a[rk + k * a_dim1], &a[rk + 1 + k * a_dim1], &
 | 
						|
		    c__1, &tau[k]);
 | 
						|
	} else {
 | 
						|
	    clarfg_(&c__1, &a[rk + k * a_dim1], &a[rk + k * a_dim1], &c__1, &
 | 
						|
		    tau[k]);
 | 
						|
	}
 | 
						|
 | 
						|
	i__1 = rk + k * a_dim1;
 | 
						|
	akk.r = a[i__1].r, akk.i = a[i__1].i;
 | 
						|
	i__1 = rk + k * a_dim1;
 | 
						|
	a[i__1].r = 1.f, a[i__1].i = 0.f;
 | 
						|
 | 
						|
/*        Compute Kth column of F: */
 | 
						|
 | 
						|
/*        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**H*A(RK:M,K). */
 | 
						|
 | 
						|
	if (k < *n) {
 | 
						|
	    i__1 = *m - rk + 1;
 | 
						|
	    i__2 = *n - k;
 | 
						|
	    cgemv_("Conjugate transpose", &i__1, &i__2, &tau[k], &a[rk + (k + 
 | 
						|
		    1) * a_dim1], lda, &a[rk + k * a_dim1], &c__1, &c_b1, &f[
 | 
						|
		    k + 1 + k * f_dim1], &c__1);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Padding F(1:K,K) with zeros. */
 | 
						|
 | 
						|
	i__1 = k;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = j + k * f_dim1;
 | 
						|
	    f[i__2].r = 0.f, f[i__2].i = 0.f;
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Incremental updating of F: */
 | 
						|
/*        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**H */
 | 
						|
/*                    *A(RK:M,K). */
 | 
						|
 | 
						|
	if (k > 1) {
 | 
						|
	    i__1 = *m - rk + 1;
 | 
						|
	    i__2 = k - 1;
 | 
						|
	    i__3 = k;
 | 
						|
	    q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i;
 | 
						|
	    cgemv_("Conjugate transpose", &i__1, &i__2, &q__1, &a[rk + a_dim1]
 | 
						|
		    , lda, &a[rk + k * a_dim1], &c__1, &c_b1, &auxv[1], &c__1);
 | 
						|
 | 
						|
	    i__1 = k - 1;
 | 
						|
	    cgemv_("No transpose", n, &i__1, &c_b2, &f[f_dim1 + 1], ldf, &
 | 
						|
		    auxv[1], &c__1, &c_b2, &f[k * f_dim1 + 1], &c__1);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Update the current row of A: */
 | 
						|
/*        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**H. */
 | 
						|
 | 
						|
	if (k < *n) {
 | 
						|
	    i__1 = *n - k;
 | 
						|
	    q__1.r = -1.f, q__1.i = 0.f;
 | 
						|
	    cgemm_("No transpose", "Conjugate transpose", &c__1, &i__1, &k, &
 | 
						|
		    q__1, &a[rk + a_dim1], lda, &f[k + 1 + f_dim1], ldf, &
 | 
						|
		    c_b2, &a[rk + (k + 1) * a_dim1], lda);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Update partial column norms. */
 | 
						|
 | 
						|
	if (rk < lastrk) {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = k + 1; j <= i__1; ++j) {
 | 
						|
		if (vn1[j] != 0.f) {
 | 
						|
 | 
						|
/*                 NOTE: The following 4 lines follow from the analysis in */
 | 
						|
/*                 Lapack Working Note 176. */
 | 
						|
 | 
						|
		    temp = c_abs(&a[rk + j * a_dim1]) / vn1[j];
 | 
						|
/* Computing MAX */
 | 
						|
		    r__1 = 0.f, r__2 = (temp + 1.f) * (1.f - temp);
 | 
						|
		    temp = f2cmax(r__1,r__2);
 | 
						|
/* Computing 2nd power */
 | 
						|
		    r__1 = vn1[j] / vn2[j];
 | 
						|
		    temp2 = temp * (r__1 * r__1);
 | 
						|
		    if (temp2 <= tol3z) {
 | 
						|
			vn2[j] = (real) lsticc;
 | 
						|
			lsticc = j;
 | 
						|
		    } else {
 | 
						|
			vn1[j] *= sqrt(temp);
 | 
						|
		    }
 | 
						|
		}
 | 
						|
/* L50: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	i__1 = rk + k * a_dim1;
 | 
						|
	a[i__1].r = akk.r, a[i__1].i = akk.i;
 | 
						|
 | 
						|
/*        End of while loop. */
 | 
						|
 | 
						|
	goto L10;
 | 
						|
    }
 | 
						|
    *kb = k;
 | 
						|
    rk = *offset + *kb;
 | 
						|
 | 
						|
/*     Apply the block reflector to the rest of the matrix: */
 | 
						|
/*     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - */
 | 
						|
/*                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**H. */
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
    i__1 = *n, i__2 = *m - *offset;
 | 
						|
    if (*kb < f2cmin(i__1,i__2)) {
 | 
						|
	i__1 = *m - rk;
 | 
						|
	i__2 = *n - *kb;
 | 
						|
	q__1.r = -1.f, q__1.i = 0.f;
 | 
						|
	cgemm_("No transpose", "Conjugate transpose", &i__1, &i__2, kb, &q__1,
 | 
						|
		 &a[rk + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b2, &
 | 
						|
		a[rk + 1 + (*kb + 1) * a_dim1], lda);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Recomputation of difficult columns. */
 | 
						|
 | 
						|
L60:
 | 
						|
    if (lsticc > 0) {
 | 
						|
	itemp = i_nint(&vn2[lsticc]);
 | 
						|
	i__1 = *m - rk;
 | 
						|
	vn1[lsticc] = scnrm2_(&i__1, &a[rk + 1 + lsticc * a_dim1], &c__1);
 | 
						|
 | 
						|
/*        NOTE: The computation of VN1( LSTICC ) relies on the fact that */
 | 
						|
/*        SNRM2 does not fail on vectors with norm below the value of */
 | 
						|
/*        SQRT(DLAMCH('S')) */
 | 
						|
 | 
						|
	vn2[lsticc] = vn1[lsticc];
 | 
						|
	lsticc = itemp;
 | 
						|
	goto L60;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of CLAQPS */
 | 
						|
 | 
						|
} /* claqps_ */
 | 
						|
 |