484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAED8 used by CSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAED8 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed8.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed8.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed8.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA,
 | 
						|
*                          Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
 | 
						|
*                          GIVCOL, GIVNUM, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
 | 
						|
*       REAL               RHO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
 | 
						|
*      $                   INDXQ( * ), PERM( * )
 | 
						|
*       REAL               D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ),
 | 
						|
*      $                   Z( * )
 | 
						|
*       COMPLEX            Q( LDQ, * ), Q2( LDQ2, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLAED8 merges the two sets of eigenvalues together into a single
 | 
						|
*> sorted set.  Then it tries to deflate the size of the problem.
 | 
						|
*> There are two ways in which deflation can occur:  when two or more
 | 
						|
*> eigenvalues are close together or if there is a tiny element in the
 | 
						|
*> Z vector.  For each such occurrence the order of the related secular
 | 
						|
*> equation problem is reduced by one.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[out] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>         Contains the number of non-deflated eigenvalues.
 | 
						|
*>         This is the order of the related secular equation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] QSIZ
 | 
						|
*> \verbatim
 | 
						|
*>          QSIZ is INTEGER
 | 
						|
*>         The dimension of the unitary matrix used to reduce
 | 
						|
*>         the dense or band matrix to tridiagonal form.
 | 
						|
*>         QSIZ >= N if ICOMPQ = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is COMPLEX array, dimension (LDQ,N)
 | 
						|
*>         On entry, Q contains the eigenvectors of the partially solved
 | 
						|
*>         system which has been previously updated in matrix
 | 
						|
*>         multiplies with other partially solved eigensystems.
 | 
						|
*>         On exit, Q contains the trailing (N-K) updated eigenvectors
 | 
						|
*>         (those which were deflated) in its last N-K columns.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>         The leading dimension of the array Q.  LDQ >= max( 1, N ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>         On entry, D contains the eigenvalues of the two submatrices to
 | 
						|
*>         be combined.  On exit, D contains the trailing (N-K) updated
 | 
						|
*>         eigenvalues (those which were deflated) sorted into increasing
 | 
						|
*>         order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] RHO
 | 
						|
*> \verbatim
 | 
						|
*>          RHO is REAL
 | 
						|
*>         Contains the off diagonal element associated with the rank-1
 | 
						|
*>         cut which originally split the two submatrices which are now
 | 
						|
*>         being recombined. RHO is modified during the computation to
 | 
						|
*>         the value required by SLAED3.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CUTPNT
 | 
						|
*> \verbatim
 | 
						|
*>          CUTPNT is INTEGER
 | 
						|
*>         Contains the location of the last eigenvalue in the leading
 | 
						|
*>         sub-matrix.  MIN(1,N) <= CUTPNT <= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension (N)
 | 
						|
*>         On input this vector contains the updating vector (the last
 | 
						|
*>         row of the first sub-eigenvector matrix and the first row of
 | 
						|
*>         the second sub-eigenvector matrix).  The contents of Z are
 | 
						|
*>         destroyed during the updating process.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DLAMDA
 | 
						|
*> \verbatim
 | 
						|
*>          DLAMDA is REAL array, dimension (N)
 | 
						|
*>         Contains a copy of the first K eigenvalues which will be used
 | 
						|
*>         by SLAED3 to form the secular equation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q2
 | 
						|
*> \verbatim
 | 
						|
*>          Q2 is COMPLEX array, dimension (LDQ2,N)
 | 
						|
*>         If ICOMPQ = 0, Q2 is not referenced.  Otherwise,
 | 
						|
*>         Contains a copy of the first K eigenvectors which will be used
 | 
						|
*>         by SLAED7 in a matrix multiply (SGEMM) to update the new
 | 
						|
*>         eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ2
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ2 is INTEGER
 | 
						|
*>         The leading dimension of the array Q2.  LDQ2 >= max( 1, N ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is REAL array, dimension (N)
 | 
						|
*>         This will hold the first k values of the final
 | 
						|
*>         deflation-altered z-vector and will be passed to SLAED3.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INDXP
 | 
						|
*> \verbatim
 | 
						|
*>          INDXP is INTEGER array, dimension (N)
 | 
						|
*>         This will contain the permutation used to place deflated
 | 
						|
*>         values of D at the end of the array. On output INDXP(1:K)
 | 
						|
*>         points to the nondeflated D-values and INDXP(K+1:N)
 | 
						|
*>         points to the deflated eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INDX
 | 
						|
*> \verbatim
 | 
						|
*>          INDX is INTEGER array, dimension (N)
 | 
						|
*>         This will contain the permutation used to sort the contents of
 | 
						|
*>         D into ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INDXQ
 | 
						|
*> \verbatim
 | 
						|
*>          INDXQ is INTEGER array, dimension (N)
 | 
						|
*>         This contains the permutation which separately sorts the two
 | 
						|
*>         sub-problems in D into ascending order.  Note that elements in
 | 
						|
*>         the second half of this permutation must first have CUTPNT
 | 
						|
*>         added to their values in order to be accurate.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PERM
 | 
						|
*> \verbatim
 | 
						|
*>          PERM is INTEGER array, dimension (N)
 | 
						|
*>         Contains the permutations (from deflation and sorting) to be
 | 
						|
*>         applied to each eigenblock.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] GIVPTR
 | 
						|
*> \verbatim
 | 
						|
*>          GIVPTR is INTEGER
 | 
						|
*>         Contains the number of Givens rotations which took place in
 | 
						|
*>         this subproblem.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] GIVCOL
 | 
						|
*> \verbatim
 | 
						|
*>          GIVCOL is INTEGER array, dimension (2, N)
 | 
						|
*>         Each pair of numbers indicates a pair of columns to take place
 | 
						|
*>         in a Givens rotation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] GIVNUM
 | 
						|
*> \verbatim
 | 
						|
*>          GIVNUM is REAL array, dimension (2, N)
 | 
						|
*>         Each number indicates the S value to be used in the
 | 
						|
*>         corresponding Givens rotation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA,
 | 
						|
     $                   Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
 | 
						|
     $                   GIVCOL, GIVNUM, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
 | 
						|
      REAL               RHO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
 | 
						|
     $                   INDXQ( * ), PERM( * )
 | 
						|
      REAL               D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ),
 | 
						|
     $                   Z( * )
 | 
						|
      COMPLEX            Q( LDQ, * ), Q2( LDQ2, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               MONE, ZERO, ONE, TWO, EIGHT
 | 
						|
      PARAMETER          ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
 | 
						|
     $                   TWO = 2.0E0, EIGHT = 8.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
 | 
						|
      REAL               C, EPS, S, T, TAU, TOL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      REAL               SLAMCH, SLAPY2
 | 
						|
      EXTERNAL           ISAMAX, SLAMCH, SLAPY2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CCOPY, CLACPY, CSROT, SCOPY, SLAMRG, SSCAL,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( QSIZ.LT.N ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -12
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CLAED8', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Need to initialize GIVPTR to O here in case of quick exit
 | 
						|
*     to prevent an unspecified code behavior (usually sigfault)
 | 
						|
*     when IWORK array on entry to *stedc is not zeroed
 | 
						|
*     (or at least some IWORK entries which used in *laed7 for GIVPTR).
 | 
						|
*
 | 
						|
      GIVPTR = 0
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      N1 = CUTPNT
 | 
						|
      N2 = N - N1
 | 
						|
      N1P1 = N1 + 1
 | 
						|
*
 | 
						|
      IF( RHO.LT.ZERO ) THEN
 | 
						|
         CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Normalize z so that norm(z) = 1
 | 
						|
*
 | 
						|
      T = ONE / SQRT( TWO )
 | 
						|
      DO 10 J = 1, N
 | 
						|
         INDX( J ) = J
 | 
						|
   10 CONTINUE
 | 
						|
      CALL SSCAL( N, T, Z, 1 )
 | 
						|
      RHO = ABS( TWO*RHO )
 | 
						|
*
 | 
						|
*     Sort the eigenvalues into increasing order
 | 
						|
*
 | 
						|
      DO 20 I = CUTPNT + 1, N
 | 
						|
         INDXQ( I ) = INDXQ( I ) + CUTPNT
 | 
						|
   20 CONTINUE
 | 
						|
      DO 30 I = 1, N
 | 
						|
         DLAMDA( I ) = D( INDXQ( I ) )
 | 
						|
         W( I ) = Z( INDXQ( I ) )
 | 
						|
   30 CONTINUE
 | 
						|
      I = 1
 | 
						|
      J = CUTPNT + 1
 | 
						|
      CALL SLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
 | 
						|
      DO 40 I = 1, N
 | 
						|
         D( I ) = DLAMDA( INDX( I ) )
 | 
						|
         Z( I ) = W( INDX( I ) )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Calculate the allowable deflation tolerance
 | 
						|
*
 | 
						|
      IMAX = ISAMAX( N, Z, 1 )
 | 
						|
      JMAX = ISAMAX( N, D, 1 )
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      TOL = EIGHT*EPS*ABS( D( JMAX ) )
 | 
						|
*
 | 
						|
*     If the rank-1 modifier is small enough, no more needs to be done
 | 
						|
*     -- except to reorganize Q so that its columns correspond with the
 | 
						|
*     elements in D.
 | 
						|
*
 | 
						|
      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
 | 
						|
         K = 0
 | 
						|
         DO 50 J = 1, N
 | 
						|
            PERM( J ) = INDXQ( INDX( J ) )
 | 
						|
            CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
 | 
						|
   50    CONTINUE
 | 
						|
         CALL CLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ), LDQ )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If there are multiple eigenvalues then the problem deflates.  Here
 | 
						|
*     the number of equal eigenvalues are found.  As each equal
 | 
						|
*     eigenvalue is found, an elementary reflector is computed to rotate
 | 
						|
*     the corresponding eigensubspace so that the corresponding
 | 
						|
*     components of Z are zero in this new basis.
 | 
						|
*
 | 
						|
      K = 0
 | 
						|
      K2 = N + 1
 | 
						|
      DO 60 J = 1, N
 | 
						|
         IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
 | 
						|
*
 | 
						|
*           Deflate due to small z component.
 | 
						|
*
 | 
						|
            K2 = K2 - 1
 | 
						|
            INDXP( K2 ) = J
 | 
						|
            IF( J.EQ.N )
 | 
						|
     $         GO TO 100
 | 
						|
         ELSE
 | 
						|
            JLAM = J
 | 
						|
            GO TO 70
 | 
						|
         END IF
 | 
						|
   60 CONTINUE
 | 
						|
   70 CONTINUE
 | 
						|
      J = J + 1
 | 
						|
      IF( J.GT.N )
 | 
						|
     $   GO TO 90
 | 
						|
      IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
 | 
						|
*
 | 
						|
*        Deflate due to small z component.
 | 
						|
*
 | 
						|
         K2 = K2 - 1
 | 
						|
         INDXP( K2 ) = J
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Check if eigenvalues are close enough to allow deflation.
 | 
						|
*
 | 
						|
         S = Z( JLAM )
 | 
						|
         C = Z( J )
 | 
						|
*
 | 
						|
*        Find sqrt(a**2+b**2) without overflow or
 | 
						|
*        destructive underflow.
 | 
						|
*
 | 
						|
         TAU = SLAPY2( C, S )
 | 
						|
         T = D( J ) - D( JLAM )
 | 
						|
         C = C / TAU
 | 
						|
         S = -S / TAU
 | 
						|
         IF( ABS( T*C*S ).LE.TOL ) THEN
 | 
						|
*
 | 
						|
*           Deflation is possible.
 | 
						|
*
 | 
						|
            Z( J ) = TAU
 | 
						|
            Z( JLAM ) = ZERO
 | 
						|
*
 | 
						|
*           Record the appropriate Givens rotation
 | 
						|
*
 | 
						|
            GIVPTR = GIVPTR + 1
 | 
						|
            GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
 | 
						|
            GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
 | 
						|
            GIVNUM( 1, GIVPTR ) = C
 | 
						|
            GIVNUM( 2, GIVPTR ) = S
 | 
						|
            CALL CSROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
 | 
						|
     $                  Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
 | 
						|
            T = D( JLAM )*C*C + D( J )*S*S
 | 
						|
            D( J ) = D( JLAM )*S*S + D( J )*C*C
 | 
						|
            D( JLAM ) = T
 | 
						|
            K2 = K2 - 1
 | 
						|
            I = 1
 | 
						|
   80       CONTINUE
 | 
						|
            IF( K2+I.LE.N ) THEN
 | 
						|
               IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
 | 
						|
                  INDXP( K2+I-1 ) = INDXP( K2+I )
 | 
						|
                  INDXP( K2+I ) = JLAM
 | 
						|
                  I = I + 1
 | 
						|
                  GO TO 80
 | 
						|
               ELSE
 | 
						|
                  INDXP( K2+I-1 ) = JLAM
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               INDXP( K2+I-1 ) = JLAM
 | 
						|
            END IF
 | 
						|
            JLAM = J
 | 
						|
         ELSE
 | 
						|
            K = K + 1
 | 
						|
            W( K ) = Z( JLAM )
 | 
						|
            DLAMDA( K ) = D( JLAM )
 | 
						|
            INDXP( K ) = JLAM
 | 
						|
            JLAM = J
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      GO TO 70
 | 
						|
   90 CONTINUE
 | 
						|
*
 | 
						|
*     Record the last eigenvalue.
 | 
						|
*
 | 
						|
      K = K + 1
 | 
						|
      W( K ) = Z( JLAM )
 | 
						|
      DLAMDA( K ) = D( JLAM )
 | 
						|
      INDXP( K ) = JLAM
 | 
						|
*
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
 | 
						|
*     and Q2 respectively.  The eigenvalues/vectors which were not
 | 
						|
*     deflated go into the first K slots of DLAMDA and Q2 respectively,
 | 
						|
*     while those which were deflated go into the last N - K slots.
 | 
						|
*
 | 
						|
      DO 110 J = 1, N
 | 
						|
         JP = INDXP( J )
 | 
						|
         DLAMDA( J ) = D( JP )
 | 
						|
         PERM( J ) = INDXQ( INDX( JP ) )
 | 
						|
         CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
 | 
						|
  110 CONTINUE
 | 
						|
*
 | 
						|
*     The deflated eigenvalues and their corresponding vectors go back
 | 
						|
*     into the last N - K slots of D and Q respectively.
 | 
						|
*
 | 
						|
      IF( K.LT.N ) THEN
 | 
						|
         CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
 | 
						|
         CALL CLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2, Q( 1, K+1 ),
 | 
						|
     $                LDQ )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAED8
 | 
						|
*
 | 
						|
      END
 |