293 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLA_GERCOND_X + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gercond_x.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gercond_x.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gercond_x.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL FUNCTION CLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF, IPIV, X,
 | 
						|
*                                    INFO, WORK, RWORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANS
 | 
						|
*       INTEGER            N, LDA, LDAF, INFO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX            A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>    CLA_GERCOND_X computes the infinity norm condition number of
 | 
						|
*>    op(A) * diag(X) where X is a COMPLEX vector.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>     Specifies the form of the system of equations:
 | 
						|
*>       = 'N':  A * X = B     (No transpose)
 | 
						|
*>       = 'T':  A**T * X = B  (Transpose)
 | 
						|
*>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>     The number of linear equations, i.e., the order of the
 | 
						|
*>     matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>     On entry, the N-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>     The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is COMPLEX array, dimension (LDAF,N)
 | 
						|
*>     The factors L and U from the factorization
 | 
						|
*>     A = P*L*U as computed by CGETRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAF
 | 
						|
*> \verbatim
 | 
						|
*>          LDAF is INTEGER
 | 
						|
*>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>     The pivot indices from the factorization A = P*L*U
 | 
						|
*>     as computed by CGETRF; row i of the matrix was interchanged
 | 
						|
*>     with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension (N)
 | 
						|
*>     The vector X in the formula op(A) * diag(X).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>       = 0:  Successful exit.
 | 
						|
*>     i > 0:  The ith argument is invalid.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (2*N).
 | 
						|
*>     Workspace.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N).
 | 
						|
*>     Workspace.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexGEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL FUNCTION CLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF, IPIV, X,
 | 
						|
     $                             INFO, WORK, RWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            N, LDA, LDAF, INFO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX            A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
 | 
						|
      REAL               RWORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOTRANS
 | 
						|
      INTEGER            KASE
 | 
						|
      REAL               AINVNM, ANORM, TMP
 | 
						|
      INTEGER            I, J
 | 
						|
      COMPLEX            ZDUM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLACN2, CGETRS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, REAL, AIMAG
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function Definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      CLA_GERCOND_X = 0.0E+0
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NOTRANS = LSAME( TRANS, 'N' )
 | 
						|
      IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
 | 
						|
     $     LSAME( TRANS, 'C' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CLA_GERCOND_X', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm of op(A)*op2(C).
 | 
						|
*
 | 
						|
      ANORM = 0.0
 | 
						|
      IF ( NOTRANS ) THEN
 | 
						|
         DO I = 1, N
 | 
						|
            TMP = 0.0E+0
 | 
						|
            DO J = 1, N
 | 
						|
               TMP = TMP + CABS1( A( I, J ) * X( J ) )
 | 
						|
            END DO
 | 
						|
            RWORK( I ) = TMP
 | 
						|
            ANORM = MAX( ANORM, TMP )
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO I = 1, N
 | 
						|
            TMP = 0.0E+0
 | 
						|
            DO J = 1, N
 | 
						|
               TMP = TMP + CABS1( A( J, I ) * X( J ) )
 | 
						|
            END DO
 | 
						|
            RWORK( I ) = TMP
 | 
						|
            ANORM = MAX( ANORM, TMP )
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         CLA_GERCOND_X = 1.0E+0
 | 
						|
         RETURN
 | 
						|
      ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Estimate the norm of inv(op(A)).
 | 
						|
*
 | 
						|
      AINVNM = 0.0E+0
 | 
						|
*
 | 
						|
      KASE = 0
 | 
						|
   10 CONTINUE
 | 
						|
      CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | 
						|
      IF( KASE.NE.0 ) THEN
 | 
						|
         IF( KASE.EQ.2 ) THEN
 | 
						|
*           Multiply by R.
 | 
						|
            DO I = 1, N
 | 
						|
               WORK( I ) = WORK( I ) * RWORK( I )
 | 
						|
            END DO
 | 
						|
*
 | 
						|
            IF ( NOTRANS ) THEN
 | 
						|
               CALL CGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            ELSE
 | 
						|
               CALL CGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            ENDIF
 | 
						|
*
 | 
						|
*           Multiply by inv(X).
 | 
						|
*
 | 
						|
            DO I = 1, N
 | 
						|
               WORK( I ) = WORK( I ) / X( I )
 | 
						|
            END DO
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Multiply by inv(X**H).
 | 
						|
*
 | 
						|
            DO I = 1, N
 | 
						|
               WORK( I ) = WORK( I ) / X( I )
 | 
						|
            END DO
 | 
						|
*
 | 
						|
            IF ( NOTRANS ) THEN
 | 
						|
               CALL CGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            ELSE
 | 
						|
               CALL CGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Multiply by R.
 | 
						|
*
 | 
						|
            DO I = 1, N
 | 
						|
               WORK( I ) = WORK( I ) * RWORK( I )
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the estimate of the reciprocal condition number.
 | 
						|
*
 | 
						|
      IF( AINVNM .NE. 0.0E+0 )
 | 
						|
     $   CLA_GERCOND_X = 1.0E+0 / AINVNM
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLA_GERCOND_X
 | 
						|
*
 | 
						|
      END
 |