349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGETSQRHRT
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGETSQRHRT + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetsqrhrt.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetsqrhrt.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetsqrhrt.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
 | 
						|
*      $                       LWORK, INFO )
 | 
						|
*       IMPLICIT NONE
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER           INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16        A( LDA, * ), T( LDT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGETSQRHRT computes a NB2-sized column blocked QR-factorization
 | 
						|
*> of a complex M-by-N matrix A with M >= N,
 | 
						|
*>
 | 
						|
*>    A = Q * R.
 | 
						|
*>
 | 
						|
*> The routine uses internally a NB1-sized column blocked and MB1-sized
 | 
						|
*> row blocked TSQR-factorization and perfors the reconstruction
 | 
						|
*> of the Householder vectors from the TSQR output. The routine also
 | 
						|
*> converts the R_tsqr factor from the TSQR-factorization output into
 | 
						|
*> the R factor that corresponds to the Householder QR-factorization,
 | 
						|
*>
 | 
						|
*>    A = Q_tsqr * R_tsqr = Q * R.
 | 
						|
*>
 | 
						|
*> The output Q and R factors are stored in the same format as in CGEQRT
 | 
						|
*> (Q is in blocked compact WY-representation). See the documentation
 | 
						|
*> of CGEQRT for more details on the format.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A. M >= N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MB1
 | 
						|
*> \verbatim
 | 
						|
*>          MB1 is INTEGER
 | 
						|
*>          The row block size to be used in the blocked TSQR.
 | 
						|
*>          MB1 > N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB1
 | 
						|
*> \verbatim
 | 
						|
*>          NB1 is INTEGER
 | 
						|
*>          The column block size to be used in the blocked TSQR.
 | 
						|
*>          N >= NB1 >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB2
 | 
						|
*> \verbatim
 | 
						|
*>          NB2 is INTEGER
 | 
						|
*>          The block size to be used in the blocked QR that is
 | 
						|
*>          output. NB2 >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>
 | 
						|
*>          On entry: an M-by-N matrix A.
 | 
						|
*>
 | 
						|
*>          On exit:
 | 
						|
*>           a) the elements on and above the diagonal
 | 
						|
*>              of the array contain the N-by-N upper-triangular
 | 
						|
*>              matrix R corresponding to the Householder QR;
 | 
						|
*>           b) the elements below the diagonal represent Q by
 | 
						|
*>              the columns of blocked V (compact WY-representation).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is COMPLEX array, dimension (LDT,N))
 | 
						|
*>          The upper triangular block reflectors stored in compact form
 | 
						|
*>          as a sequence of upper triangular blocks.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.  LDT >= NB2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          (workspace) COMPLEX array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ),
 | 
						|
*>          where
 | 
						|
*>             NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)),
 | 
						|
*>             NB1LOCAL = MIN(NB1,N).
 | 
						|
*>             LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL,
 | 
						|
*>             LW1 = NB1LOCAL * N,
 | 
						|
*>             LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ),
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed.
 | 
						|
*>          The routine only calculates the optimal size of the WORK
 | 
						|
*>          array, returns this value as the first entry of the WORK
 | 
						|
*>          array, and no error message related to LWORK is issued
 | 
						|
*>          by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup comlpexOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> November 2020, Igor Kozachenko,
 | 
						|
*>                Computer Science Division,
 | 
						|
*>                University of California, Berkeley
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
 | 
						|
     $                       LWORK, INFO )
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER           INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX           A( LDA, * ), T( LDT, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT,
 | 
						|
     $                   NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CCOPY, CLATSQR, CUNGTSQR_ROW, CUNHR_COL,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CEILING, REAL, CMPLX, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY  = LWORK.EQ.-1
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( MB1.LE.N ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NB1.LT.1 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( NB2.LT.1 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDT.LT.MAX( 1,  MIN( NB2, N ) ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Test the input LWORK for the dimension of the array WORK.
 | 
						|
*        This workspace is used to store array:
 | 
						|
*        a) Matrix T and WORK for CLATSQR;
 | 
						|
*        b) N-by-N upper-triangular factor R_tsqr;
 | 
						|
*        c) Matrix T and array WORK for CUNGTSQR_ROW;
 | 
						|
*        d) Diagonal D for CUNHR_COL.
 | 
						|
*
 | 
						|
         IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -11
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Set block size for column blocks
 | 
						|
*
 | 
						|
            NB1LOCAL = MIN( NB1, N )
 | 
						|
*
 | 
						|
            NUM_ALL_ROW_BLOCKS = MAX( 1,
 | 
						|
     $                   CEILING( REAL( M - N ) / REAL( MB1 - N ) ) )
 | 
						|
*
 | 
						|
*           Length and leading dimension of WORK array to place
 | 
						|
*           T array in TSQR.
 | 
						|
*
 | 
						|
            LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL
 | 
						|
 | 
						|
            LDWT = NB1LOCAL
 | 
						|
*
 | 
						|
*           Length of TSQR work array
 | 
						|
*
 | 
						|
            LW1 = NB1LOCAL * N
 | 
						|
*
 | 
						|
*           Length of CUNGTSQR_ROW work array.
 | 
						|
*
 | 
						|
            LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) )
 | 
						|
*
 | 
						|
            LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) )
 | 
						|
*
 | 
						|
            IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
 | 
						|
               INFO = -11
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Handle error in the input parameters and return workspace query.
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGETSQRHRT', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF ( LQUERY ) THEN
 | 
						|
         WORK( 1 ) = CMPLX( LWORKOPT )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( MIN( M, N ).EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = CMPLX( LWORKOPT )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      NB2LOCAL = MIN( NB2, N )
 | 
						|
*
 | 
						|
*
 | 
						|
*     (1) Perform TSQR-factorization of the M-by-N matrix A.
 | 
						|
*
 | 
						|
      CALL CLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
 | 
						|
     $              WORK(LWT+1), LW1, IINFO )
 | 
						|
*
 | 
						|
*     (2) Copy the factor R_tsqr stored in the upper-triangular part
 | 
						|
*         of A into the square matrix in the work array
 | 
						|
*         WORK(LWT+1:LWT+N*N) column-by-column.
 | 
						|
*
 | 
						|
      DO J = 1, N
 | 
						|
         CALL CCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 )
 | 
						|
      END DO
 | 
						|
*
 | 
						|
*     (3) Generate a M-by-N matrix Q with orthonormal columns from
 | 
						|
*     the result stored below the diagonal in the array A in place.
 | 
						|
*
 | 
						|
 | 
						|
      CALL CUNGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
 | 
						|
     $                   WORK( LWT+N*N+1 ), LW2, IINFO )
 | 
						|
*
 | 
						|
*     (4) Perform the reconstruction of Householder vectors from
 | 
						|
*     the matrix Q (stored in A) in place.
 | 
						|
*
 | 
						|
      CALL CUNHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT,
 | 
						|
     $                WORK( LWT+N*N+1 ), IINFO )
 | 
						|
*
 | 
						|
*     (5) Copy the factor R_tsqr stored in the square matrix in the
 | 
						|
*     work array WORK(LWT+1:LWT+N*N) into the upper-triangular
 | 
						|
*     part of A.
 | 
						|
*
 | 
						|
*     (6) Compute from R_tsqr the factor R_hr corresponding to
 | 
						|
*     the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr.
 | 
						|
*     This multiplication by the sign matrix S on the left means
 | 
						|
*     changing the sign of I-th row of the matrix R_tsqr according
 | 
						|
*     to sign of the I-th diagonal element DIAG(I) of the matrix S.
 | 
						|
*     DIAG is stored in WORK( LWT+N*N+1 ) from the CUNHR_COL output.
 | 
						|
*
 | 
						|
*     (5) and (6) can be combined in a single loop, so the rows in A
 | 
						|
*     are accessed only once.
 | 
						|
*
 | 
						|
      DO I = 1, N
 | 
						|
         IF( WORK( LWT+N*N+I ).EQ.-CONE ) THEN
 | 
						|
            DO J = I, N
 | 
						|
               A( I, J ) = -CONE * WORK( LWT+N*(J-1)+I )
 | 
						|
            END DO
 | 
						|
         ELSE
 | 
						|
            CALL CCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA )
 | 
						|
         END IF
 | 
						|
      END DO
 | 
						|
*
 | 
						|
      WORK( 1 ) = CMPLX( LWORKOPT )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGETSQRHRT
 | 
						|
*
 | 
						|
      END |