391 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			391 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZTPSV
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER INCX,N
 | 
						|
*       CHARACTER DIAG,TRANS,UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16 AP(*),X(*)
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZTPSV  solves one of the systems of equations
 | 
						|
*>
 | 
						|
*>    A*x = b,   or   A**T*x = b,   or   A**H*x = b,
 | 
						|
*>
 | 
						|
*> where b and x are n element vectors and A is an n by n unit, or
 | 
						|
*> non-unit, upper or lower triangular matrix, supplied in packed form.
 | 
						|
*>
 | 
						|
*> No test for singularity or near-singularity is included in this
 | 
						|
*> routine. Such tests must be performed before calling this routine.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the matrix is an upper or
 | 
						|
*>           lower triangular matrix as follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>           On entry, TRANS specifies the equations to be solved as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>              TRANS = 'N' or 'n'   A*x = b.
 | 
						|
*>
 | 
						|
*>              TRANS = 'T' or 't'   A**T*x = b.
 | 
						|
*>
 | 
						|
*>              TRANS = 'C' or 'c'   A**H*x = b.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>           On entry, DIAG specifies whether or not A is unit
 | 
						|
*>           triangular as follows:
 | 
						|
*>
 | 
						|
*>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | 
						|
*>
 | 
						|
*>              DIAG = 'N' or 'n'   A is not assumed to be unit
 | 
						|
*>                                  triangular.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry, N specifies the order of the matrix A.
 | 
						|
*>           N must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX*16 array of DIMENSION at least
 | 
						|
*>           ( ( n*( n + 1 ) )/2 ).
 | 
						|
*>           Before entry with  UPLO = 'U' or 'u', the array AP must
 | 
						|
*>           contain the upper triangular matrix packed sequentially,
 | 
						|
*>           column by column, so that AP( 1 ) contains a( 1, 1 ),
 | 
						|
*>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
 | 
						|
*>           respectively, and so on.
 | 
						|
*>           Before entry with UPLO = 'L' or 'l', the array AP must
 | 
						|
*>           contain the lower triangular matrix packed sequentially,
 | 
						|
*>           column by column, so that AP( 1 ) contains a( 1, 1 ),
 | 
						|
*>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
 | 
						|
*>           respectively, and so on.
 | 
						|
*>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 | 
						|
*>           A are not referenced, but are assumed to be unity.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array of dimension at least
 | 
						|
*>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | 
						|
*>           Before entry, the incremented array X must contain the n
 | 
						|
*>           element right-hand side vector b. On exit, X is overwritten
 | 
						|
*>           with the solution vector x.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>           On entry, INCX specifies the increment for the elements of
 | 
						|
*>           X. INCX must not be zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_blas_level2
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Level 2 Blas routine.
 | 
						|
*>
 | 
						|
*>  -- Written on 22-October-1986.
 | 
						|
*>     Jack Dongarra, Argonne National Lab.
 | 
						|
*>     Jeremy Du Croz, Nag Central Office.
 | 
						|
*>     Sven Hammarling, Nag Central Office.
 | 
						|
*>     Richard Hanson, Sandia National Labs.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
 | 
						|
*
 | 
						|
*  -- Reference BLAS level2 routine (version 3.4.0) --
 | 
						|
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER INCX,N
 | 
						|
      CHARACTER DIAG,TRANS,UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16 AP(*),X(*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16 ZERO
 | 
						|
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX*16 TEMP
 | 
						|
      INTEGER I,INFO,IX,J,JX,K,KK,KX
 | 
						|
      LOGICAL NOCONJ,NOUNIT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL LSAME
 | 
						|
      EXTERNAL LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC DCONJG
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | 
						|
          INFO = 1
 | 
						|
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
 | 
						|
     +         .NOT.LSAME(TRANS,'C')) THEN
 | 
						|
          INFO = 2
 | 
						|
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
 | 
						|
          INFO = 3
 | 
						|
      ELSE IF (N.LT.0) THEN
 | 
						|
          INFO = 4
 | 
						|
      ELSE IF (INCX.EQ.0) THEN
 | 
						|
          INFO = 7
 | 
						|
      END IF
 | 
						|
      IF (INFO.NE.0) THEN
 | 
						|
          CALL XERBLA('ZTPSV ',INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF (N.EQ.0) RETURN
 | 
						|
*
 | 
						|
      NOCONJ = LSAME(TRANS,'T')
 | 
						|
      NOUNIT = LSAME(DIAG,'N')
 | 
						|
*
 | 
						|
*     Set up the start point in X if the increment is not unity. This
 | 
						|
*     will be  ( N - 1 )*INCX  too small for descending loops.
 | 
						|
*
 | 
						|
      IF (INCX.LE.0) THEN
 | 
						|
          KX = 1 - (N-1)*INCX
 | 
						|
      ELSE IF (INCX.NE.1) THEN
 | 
						|
          KX = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of AP are
 | 
						|
*     accessed sequentially with one pass through AP.
 | 
						|
*
 | 
						|
      IF (LSAME(TRANS,'N')) THEN
 | 
						|
*
 | 
						|
*        Form  x := inv( A )*x.
 | 
						|
*
 | 
						|
          IF (LSAME(UPLO,'U')) THEN
 | 
						|
              KK = (N* (N+1))/2
 | 
						|
              IF (INCX.EQ.1) THEN
 | 
						|
                  DO 20 J = N,1,-1
 | 
						|
                      IF (X(J).NE.ZERO) THEN
 | 
						|
                          IF (NOUNIT) X(J) = X(J)/AP(KK)
 | 
						|
                          TEMP = X(J)
 | 
						|
                          K = KK - 1
 | 
						|
                          DO 10 I = J - 1,1,-1
 | 
						|
                              X(I) = X(I) - TEMP*AP(K)
 | 
						|
                              K = K - 1
 | 
						|
   10                     CONTINUE
 | 
						|
                      END IF
 | 
						|
                      KK = KK - J
 | 
						|
   20             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  JX = KX + (N-1)*INCX
 | 
						|
                  DO 40 J = N,1,-1
 | 
						|
                      IF (X(JX).NE.ZERO) THEN
 | 
						|
                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
 | 
						|
                          TEMP = X(JX)
 | 
						|
                          IX = JX
 | 
						|
                          DO 30 K = KK - 1,KK - J + 1,-1
 | 
						|
                              IX = IX - INCX
 | 
						|
                              X(IX) = X(IX) - TEMP*AP(K)
 | 
						|
   30                     CONTINUE
 | 
						|
                      END IF
 | 
						|
                      JX = JX - INCX
 | 
						|
                      KK = KK - J
 | 
						|
   40             CONTINUE
 | 
						|
              END IF
 | 
						|
          ELSE
 | 
						|
              KK = 1
 | 
						|
              IF (INCX.EQ.1) THEN
 | 
						|
                  DO 60 J = 1,N
 | 
						|
                      IF (X(J).NE.ZERO) THEN
 | 
						|
                          IF (NOUNIT) X(J) = X(J)/AP(KK)
 | 
						|
                          TEMP = X(J)
 | 
						|
                          K = KK + 1
 | 
						|
                          DO 50 I = J + 1,N
 | 
						|
                              X(I) = X(I) - TEMP*AP(K)
 | 
						|
                              K = K + 1
 | 
						|
   50                     CONTINUE
 | 
						|
                      END IF
 | 
						|
                      KK = KK + (N-J+1)
 | 
						|
   60             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  JX = KX
 | 
						|
                  DO 80 J = 1,N
 | 
						|
                      IF (X(JX).NE.ZERO) THEN
 | 
						|
                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
 | 
						|
                          TEMP = X(JX)
 | 
						|
                          IX = JX
 | 
						|
                          DO 70 K = KK + 1,KK + N - J
 | 
						|
                              IX = IX + INCX
 | 
						|
                              X(IX) = X(IX) - TEMP*AP(K)
 | 
						|
   70                     CONTINUE
 | 
						|
                      END IF
 | 
						|
                      JX = JX + INCX
 | 
						|
                      KK = KK + (N-J+1)
 | 
						|
   80             CONTINUE
 | 
						|
              END IF
 | 
						|
          END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
 | 
						|
*
 | 
						|
          IF (LSAME(UPLO,'U')) THEN
 | 
						|
              KK = 1
 | 
						|
              IF (INCX.EQ.1) THEN
 | 
						|
                  DO 110 J = 1,N
 | 
						|
                      TEMP = X(J)
 | 
						|
                      K = KK
 | 
						|
                      IF (NOCONJ) THEN
 | 
						|
                          DO 90 I = 1,J - 1
 | 
						|
                              TEMP = TEMP - AP(K)*X(I)
 | 
						|
                              K = K + 1
 | 
						|
   90                     CONTINUE
 | 
						|
                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
 | 
						|
                      ELSE
 | 
						|
                          DO 100 I = 1,J - 1
 | 
						|
                              TEMP = TEMP - DCONJG(AP(K))*X(I)
 | 
						|
                              K = K + 1
 | 
						|
  100                     CONTINUE
 | 
						|
                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
 | 
						|
                      END IF
 | 
						|
                      X(J) = TEMP
 | 
						|
                      KK = KK + J
 | 
						|
  110             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  JX = KX
 | 
						|
                  DO 140 J = 1,N
 | 
						|
                      TEMP = X(JX)
 | 
						|
                      IX = KX
 | 
						|
                      IF (NOCONJ) THEN
 | 
						|
                          DO 120 K = KK,KK + J - 2
 | 
						|
                              TEMP = TEMP - AP(K)*X(IX)
 | 
						|
                              IX = IX + INCX
 | 
						|
  120                     CONTINUE
 | 
						|
                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
 | 
						|
                      ELSE
 | 
						|
                          DO 130 K = KK,KK + J - 2
 | 
						|
                              TEMP = TEMP - DCONJG(AP(K))*X(IX)
 | 
						|
                              IX = IX + INCX
 | 
						|
  130                     CONTINUE
 | 
						|
                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
 | 
						|
                      END IF
 | 
						|
                      X(JX) = TEMP
 | 
						|
                      JX = JX + INCX
 | 
						|
                      KK = KK + J
 | 
						|
  140             CONTINUE
 | 
						|
              END IF
 | 
						|
          ELSE
 | 
						|
              KK = (N* (N+1))/2
 | 
						|
              IF (INCX.EQ.1) THEN
 | 
						|
                  DO 170 J = N,1,-1
 | 
						|
                      TEMP = X(J)
 | 
						|
                      K = KK
 | 
						|
                      IF (NOCONJ) THEN
 | 
						|
                          DO 150 I = N,J + 1,-1
 | 
						|
                              TEMP = TEMP - AP(K)*X(I)
 | 
						|
                              K = K - 1
 | 
						|
  150                     CONTINUE
 | 
						|
                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
 | 
						|
                      ELSE
 | 
						|
                          DO 160 I = N,J + 1,-1
 | 
						|
                              TEMP = TEMP - DCONJG(AP(K))*X(I)
 | 
						|
                              K = K - 1
 | 
						|
  160                     CONTINUE
 | 
						|
                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
 | 
						|
                      END IF
 | 
						|
                      X(J) = TEMP
 | 
						|
                      KK = KK - (N-J+1)
 | 
						|
  170             CONTINUE
 | 
						|
              ELSE
 | 
						|
                  KX = KX + (N-1)*INCX
 | 
						|
                  JX = KX
 | 
						|
                  DO 200 J = N,1,-1
 | 
						|
                      TEMP = X(JX)
 | 
						|
                      IX = KX
 | 
						|
                      IF (NOCONJ) THEN
 | 
						|
                          DO 180 K = KK,KK - (N- (J+1)),-1
 | 
						|
                              TEMP = TEMP - AP(K)*X(IX)
 | 
						|
                              IX = IX - INCX
 | 
						|
  180                     CONTINUE
 | 
						|
                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
 | 
						|
                      ELSE
 | 
						|
                          DO 190 K = KK,KK - (N- (J+1)),-1
 | 
						|
                              TEMP = TEMP - DCONJG(AP(K))*X(IX)
 | 
						|
                              IX = IX - INCX
 | 
						|
  190                     CONTINUE
 | 
						|
                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
 | 
						|
                      END IF
 | 
						|
                      X(JX) = TEMP
 | 
						|
                      JX = JX - INCX
 | 
						|
                      KK = KK - (N-J+1)
 | 
						|
  200             CONTINUE
 | 
						|
              END IF
 | 
						|
          END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZTPSV .
 | 
						|
*
 | 
						|
      END
 |