194 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLARNV returns a vector of random numbers from a uniform or normal distribution.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLARNV + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarnv.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarnv.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarnv.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLARNV( IDIST, ISEED, N, X )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            IDIST, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISEED( 4 )
 | 
						|
*       COMPLEX            X( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLARNV returns a vector of n random complex numbers from a uniform or
 | 
						|
*> normal distribution.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] IDIST
 | 
						|
*> \verbatim
 | 
						|
*>          IDIST is INTEGER
 | 
						|
*>          Specifies the distribution of the random numbers:
 | 
						|
*>          = 1:  real and imaginary parts each uniform (0,1)
 | 
						|
*>          = 2:  real and imaginary parts each uniform (-1,1)
 | 
						|
*>          = 3:  real and imaginary parts each normal (0,1)
 | 
						|
*>          = 4:  uniformly distributed on the disc abs(z) < 1
 | 
						|
*>          = 5:  uniformly distributed on the circle abs(z) = 1
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry, the seed of the random number generator; the array
 | 
						|
*>          elements must be between 0 and 4095, and ISEED(4) must be
 | 
						|
*>          odd.
 | 
						|
*>          On exit, the seed is updated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of random numbers to be generated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension (N)
 | 
						|
*>          The generated random numbers.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  This routine calls the auxiliary routine SLARUV to generate random
 | 
						|
*>  real numbers from a uniform (0,1) distribution, in batches of up to
 | 
						|
*>  128 using vectorisable code. The Box-Muller method is used to
 | 
						|
*>  transform numbers from a uniform to a normal distribution.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLARNV( IDIST, ISEED, N, X )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            IDIST, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISEED( 4 )
 | 
						|
      COMPLEX            X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
 | 
						|
      INTEGER            LV
 | 
						|
      PARAMETER          ( LV = 128 )
 | 
						|
      REAL               TWOPI
 | 
						|
      PARAMETER          ( TWOPI = 6.2831853071795864769252867663E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IL, IV
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               U( LV )
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CMPLX, EXP, LOG, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLARUV
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      DO 60 IV = 1, N, LV / 2
 | 
						|
         IL = MIN( LV / 2, N-IV+1 )
 | 
						|
*
 | 
						|
*        Call SLARUV to generate 2*IL real numbers from a uniform (0,1)
 | 
						|
*        distribution (2*IL <= LV)
 | 
						|
*
 | 
						|
         CALL SLARUV( ISEED, 2*IL, U )
 | 
						|
*
 | 
						|
         IF( IDIST.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           Copy generated numbers
 | 
						|
*
 | 
						|
            DO 10 I = 1, IL
 | 
						|
               X( IV+I-1 ) = CMPLX( U( 2*I-1 ), U( 2*I ) )
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE IF( IDIST.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*           Convert generated numbers to uniform (-1,1) distribution
 | 
						|
*
 | 
						|
            DO 20 I = 1, IL
 | 
						|
               X( IV+I-1 ) = CMPLX( TWO*U( 2*I-1 )-ONE,
 | 
						|
     $                       TWO*U( 2*I )-ONE )
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE IF( IDIST.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*           Convert generated numbers to normal (0,1) distribution
 | 
						|
*
 | 
						|
            DO 30 I = 1, IL
 | 
						|
               X( IV+I-1 ) = SQRT( -TWO*LOG( U( 2*I-1 ) ) )*
 | 
						|
     $                       EXP( CMPLX( ZERO, TWOPI*U( 2*I ) ) )
 | 
						|
   30       CONTINUE
 | 
						|
         ELSE IF( IDIST.EQ.4 ) THEN
 | 
						|
*
 | 
						|
*           Convert generated numbers to complex numbers uniformly
 | 
						|
*           distributed on the unit disk
 | 
						|
*
 | 
						|
            DO 40 I = 1, IL
 | 
						|
               X( IV+I-1 ) = SQRT( U( 2*I-1 ) )*
 | 
						|
     $                       EXP( CMPLX( ZERO, TWOPI*U( 2*I ) ) )
 | 
						|
   40       CONTINUE
 | 
						|
         ELSE IF( IDIST.EQ.5 ) THEN
 | 
						|
*
 | 
						|
*           Convert generated numbers to complex numbers uniformly
 | 
						|
*           distributed on the unit circle
 | 
						|
*
 | 
						|
            DO 50 I = 1, IL
 | 
						|
               X( IV+I-1 ) = EXP( CMPLX( ZERO, TWOPI*U( 2*I ) ) )
 | 
						|
   50       CONTINUE
 | 
						|
         END IF
 | 
						|
   60 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLARNV
 | 
						|
*
 | 
						|
      END
 |