324 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLATDF + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatdf.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatdf.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatdf.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
 | |
| *                          JPIV )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IJOB, LDZ, N
 | |
| *       DOUBLE PRECISION   RDSCAL, RDSUM
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * ), JPIV( * )
 | |
| *       COMPLEX*16         RHS( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLATDF computes the contribution to the reciprocal Dif-estimate
 | |
| *> by solving for x in Z * x = b, where b is chosen such that the norm
 | |
| *> of x is as large as possible. It is assumed that LU decomposition
 | |
| *> of Z has been computed by ZGETC2. On entry RHS = f holds the
 | |
| *> contribution from earlier solved sub-systems, and on return RHS = x.
 | |
| *>
 | |
| *> The factorization of Z returned by ZGETC2 has the form
 | |
| *> Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
 | |
| *> triangular with unit diagonal elements and U is upper triangular.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] IJOB
 | |
| *> \verbatim
 | |
| *>          IJOB is INTEGER
 | |
| *>          IJOB = 2: First compute an approximative null-vector e
 | |
| *>              of Z using ZGECON, e is normalized and solve for
 | |
| *>              Zx = +-e - f with the sign giving the greater value of
 | |
| *>              2-norm(x).  About 5 times as expensive as Default.
 | |
| *>          IJOB .ne. 2: Local look ahead strategy where
 | |
| *>              all entries of the r.h.s. b is choosen as either +1 or
 | |
| *>              -1.  Default.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
 | |
| *>          On entry, the LU part of the factorization of the n-by-n
 | |
| *>          matrix Z computed by ZGETC2:  Z = P * L * U * Q
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDA >= max(1, N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RHS
 | |
| *> \verbatim
 | |
| *>          RHS is DOUBLE PRECISION array, dimension (N).
 | |
| *>          On entry, RHS contains contributions from other subsystems.
 | |
| *>          On exit, RHS contains the solution of the subsystem with
 | |
| *>          entries according to the value of IJOB (see above).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RDSUM
 | |
| *> \verbatim
 | |
| *>          RDSUM is DOUBLE PRECISION
 | |
| *>          On entry, the sum of squares of computed contributions to
 | |
| *>          the Dif-estimate under computation by ZTGSYL, where the
 | |
| *>          scaling factor RDSCAL (see below) has been factored out.
 | |
| *>          On exit, the corresponding sum of squares updated with the
 | |
| *>          contributions from the current sub-system.
 | |
| *>          If TRANS = 'T' RDSUM is not touched.
 | |
| *>          NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RDSCAL
 | |
| *> \verbatim
 | |
| *>          RDSCAL is DOUBLE PRECISION
 | |
| *>          On entry, scaling factor used to prevent overflow in RDSUM.
 | |
| *>          On exit, RDSCAL is updated w.r.t. the current contributions
 | |
| *>          in RDSUM.
 | |
| *>          If TRANS = 'T', RDSCAL is not touched.
 | |
| *>          NOTE: RDSCAL only makes sense when ZTGSY2 is called by
 | |
| *>          ZTGSYL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N).
 | |
| *>          The pivot indices; for 1 <= i <= N, row i of the
 | |
| *>          matrix has been interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JPIV
 | |
| *> \verbatim
 | |
| *>          JPIV is INTEGER array, dimension (N).
 | |
| *>          The pivot indices; for 1 <= j <= N, column j of the
 | |
| *>          matrix has been interchanged with column JPIV(j).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup complex16OTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *>  This routine is a further developed implementation of algorithm
 | |
| *>  BSOLVE in [1] using complete pivoting in the LU factorization.
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>   [1]   Bo Kagstrom and Lars Westin,
 | |
| *>         Generalized Schur Methods with Condition Estimators for
 | |
| *>         Solving the Generalized Sylvester Equation, IEEE Transactions
 | |
| *>         on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
 | |
| *>\n
 | |
| *>   [2]   Peter Poromaa,
 | |
| *>         On Efficient and Robust Estimators for the Separation
 | |
| *>         between two Regular Matrix Pairs with Applications in
 | |
| *>         Condition Estimation. Report UMINF-95.05, Department of
 | |
| *>         Computing Science, Umea University, S-901 87 Umea, Sweden,
 | |
| *>         1995.
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
 | |
|      $                   JPIV )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IJOB, LDZ, N
 | |
|       DOUBLE PRECISION   RDSCAL, RDSUM
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * ), JPIV( * )
 | |
|       COMPLEX*16         RHS( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            MAXDIM
 | |
|       PARAMETER          ( MAXDIM = 2 )
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         CONE
 | |
|       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, J, K
 | |
|       DOUBLE PRECISION   RTEMP, SCALE, SMINU, SPLUS
 | |
|       COMPLEX*16         BM, BP, PMONE, TEMP
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   RWORK( MAXDIM )
 | |
|       COMPLEX*16         WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZAXPY, ZCOPY, ZGECON, ZGESC2, ZLASSQ, ZLASWP,
 | |
|      $                   ZSCAL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DZASUM
 | |
|       COMPLEX*16         ZDOTC
 | |
|       EXTERNAL           DZASUM, ZDOTC
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( IJOB.NE.2 ) THEN
 | |
| *
 | |
| *        Apply permutations IPIV to RHS
 | |
| *
 | |
|          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
 | |
| *
 | |
| *        Solve for L-part choosing RHS either to +1 or -1.
 | |
| *
 | |
|          PMONE = -CONE
 | |
|          DO 10 J = 1, N - 1
 | |
|             BP = RHS( J ) + CONE
 | |
|             BM = RHS( J ) - CONE
 | |
|             SPLUS = ONE
 | |
| *
 | |
| *           Lockahead for L- part RHS(1:N-1) = +-1
 | |
| *           SPLUS and SMIN computed more efficiently than in BSOLVE[1].
 | |
| *
 | |
|             SPLUS = SPLUS + DBLE( ZDOTC( N-J, Z( J+1, J ), 1, Z( J+1,
 | |
|      $              J ), 1 ) )
 | |
|             SMINU = DBLE( ZDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) )
 | |
|             SPLUS = SPLUS*DBLE( RHS( J ) )
 | |
|             IF( SPLUS.GT.SMINU ) THEN
 | |
|                RHS( J ) = BP
 | |
|             ELSE IF( SMINU.GT.SPLUS ) THEN
 | |
|                RHS( J ) = BM
 | |
|             ELSE
 | |
| *
 | |
| *              In this case the updating sums are equal and we can
 | |
| *              choose RHS(J) +1 or -1. The first time this happens we
 | |
| *              choose -1, thereafter +1. This is a simple way to get
 | |
| *              good estimates of matrices like Byers well-known example
 | |
| *              (see [1]). (Not done in BSOLVE.)
 | |
| *
 | |
|                RHS( J ) = RHS( J ) + PMONE
 | |
|                PMONE = CONE
 | |
|             END IF
 | |
| *
 | |
| *           Compute the remaining r.h.s.
 | |
| *
 | |
|             TEMP = -RHS( J )
 | |
|             CALL ZAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        Solve for U- part, lockahead for RHS(N) = +-1. This is not done
 | |
| *        In BSOLVE and will hopefully give us a better estimate because
 | |
| *        any ill-conditioning of the original matrix is transfered to U
 | |
| *        and not to L. U(N, N) is an approximation to sigma_min(LU).
 | |
| *
 | |
|          CALL ZCOPY( N-1, RHS, 1, WORK, 1 )
 | |
|          WORK( N ) = RHS( N ) + CONE
 | |
|          RHS( N ) = RHS( N ) - CONE
 | |
|          SPLUS = ZERO
 | |
|          SMINU = ZERO
 | |
|          DO 30 I = N, 1, -1
 | |
|             TEMP = CONE / Z( I, I )
 | |
|             WORK( I ) = WORK( I )*TEMP
 | |
|             RHS( I ) = RHS( I )*TEMP
 | |
|             DO 20 K = I + 1, N
 | |
|                WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP )
 | |
|                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
 | |
|    20       CONTINUE
 | |
|             SPLUS = SPLUS + ABS( WORK( I ) )
 | |
|             SMINU = SMINU + ABS( RHS( I ) )
 | |
|    30    CONTINUE
 | |
|          IF( SPLUS.GT.SMINU )
 | |
|      $      CALL ZCOPY( N, WORK, 1, RHS, 1 )
 | |
| *
 | |
| *        Apply the permutations JPIV to the computed solution (RHS)
 | |
| *
 | |
|          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
 | |
| *
 | |
| *        Compute the sum of squares
 | |
| *
 | |
|          CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     ENTRY IJOB = 2
 | |
| *
 | |
| *     Compute approximate nullvector XM of Z
 | |
| *
 | |
|       CALL ZGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO )
 | |
|       CALL ZCOPY( N, WORK( N+1 ), 1, XM, 1 )
 | |
| *
 | |
| *     Compute RHS
 | |
| *
 | |
|       CALL ZLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
 | |
|       TEMP = CONE / SQRT( ZDOTC( N, XM, 1, XM, 1 ) )
 | |
|       CALL ZSCAL( N, TEMP, XM, 1 )
 | |
|       CALL ZCOPY( N, XM, 1, XP, 1 )
 | |
|       CALL ZAXPY( N, CONE, RHS, 1, XP, 1 )
 | |
|       CALL ZAXPY( N, -CONE, XM, 1, RHS, 1 )
 | |
|       CALL ZGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE )
 | |
|       CALL ZGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE )
 | |
|       IF( DZASUM( N, XP, 1 ).GT.DZASUM( N, RHS, 1 ) )
 | |
|      $   CALL ZCOPY( N, XP, 1, RHS, 1 )
 | |
| *
 | |
| *     Compute the sum of squares
 | |
| *
 | |
|       CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLATDF
 | |
| *
 | |
|       END
 |