264 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZPTEQR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZPTEQR + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpteqr.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpteqr.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpteqr.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          COMPZ
 | 
						|
*       INTEGER            INFO, LDZ, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * ), WORK( * )
 | 
						|
*       COMPLEX*16         Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZPTEQR computes all eigenvalues and, optionally, eigenvectors of a
 | 
						|
*> symmetric positive definite tridiagonal matrix by first factoring the
 | 
						|
*> matrix using DPTTRF and then calling ZBDSQR to compute the singular
 | 
						|
*> values of the bidiagonal factor.
 | 
						|
*>
 | 
						|
*> This routine computes the eigenvalues of the positive definite
 | 
						|
*> tridiagonal matrix to high relative accuracy.  This means that if the
 | 
						|
*> eigenvalues range over many orders of magnitude in size, then the
 | 
						|
*> small eigenvalues and corresponding eigenvectors will be computed
 | 
						|
*> more accurately than, for example, with the standard QR method.
 | 
						|
*>
 | 
						|
*> The eigenvectors of a full or band positive definite Hermitian matrix
 | 
						|
*> can also be found if ZHETRD, ZHPTRD, or ZHBTRD has been used to
 | 
						|
*> reduce this matrix to tridiagonal form.  (The reduction to
 | 
						|
*> tridiagonal form, however, may preclude the possibility of obtaining
 | 
						|
*> high relative accuracy in the small eigenvalues of the original
 | 
						|
*> matrix, if these eigenvalues range over many orders of magnitude.)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] COMPZ
 | 
						|
*> \verbatim
 | 
						|
*>          COMPZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only.
 | 
						|
*>          = 'V':  Compute eigenvectors of original Hermitian
 | 
						|
*>                  matrix also.  Array Z contains the unitary matrix
 | 
						|
*>                  used to reduce the original matrix to tridiagonal
 | 
						|
*>                  form.
 | 
						|
*>          = 'I':  Compute eigenvectors of tridiagonal matrix also.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          On entry, the n diagonal elements of the tridiagonal matrix.
 | 
						|
*>          On normal exit, D contains the eigenvalues, in descending
 | 
						|
*>          order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | 
						|
*>          matrix.
 | 
						|
*>          On exit, E has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is COMPLEX*16 array, dimension (LDZ, N)
 | 
						|
*>          On entry, if COMPZ = 'V', the unitary matrix used in the
 | 
						|
*>          reduction to tridiagonal form.
 | 
						|
*>          On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
 | 
						|
*>          original Hermitian matrix;
 | 
						|
*>          if COMPZ = 'I', the orthonormal eigenvectors of the
 | 
						|
*>          tridiagonal matrix.
 | 
						|
*>          If INFO > 0 on exit, Z contains the eigenvectors associated
 | 
						|
*>          with only the stored eigenvalues.
 | 
						|
*>          If  COMPZ = 'N', then Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          COMPZ = 'V' or 'I', LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (4*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = i, and i is:
 | 
						|
*>                <= N  the Cholesky factorization of the matrix could
 | 
						|
*>                      not be performed because the i-th principal minor
 | 
						|
*>                      was not positive definite.
 | 
						|
*>                > N   the SVD algorithm failed to converge;
 | 
						|
*>                      if INFO = N+i, i off-diagonal elements of the
 | 
						|
*>                      bidiagonal factor did not converge to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complex16PTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          COMPZ
 | 
						|
      INTEGER            INFO, LDZ, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * ), E( * ), WORK( * )
 | 
						|
      COMPLEX*16         Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  ====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DPTTRF, XERBLA, ZBDSQR, ZLASET
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      COMPLEX*16         C( 1, 1 ), VT( 1, 1 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, ICOMPZ, NRU
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( LSAME( COMPZ, 'N' ) ) THEN
 | 
						|
         ICOMPZ = 0
 | 
						|
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
 | 
						|
         ICOMPZ = 1
 | 
						|
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
 | 
						|
         ICOMPZ = 2
 | 
						|
      ELSE
 | 
						|
         ICOMPZ = -1
 | 
						|
      END IF
 | 
						|
      IF( ICOMPZ.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
 | 
						|
     $         N ) ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZPTEQR', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         IF( ICOMPZ.GT.0 )
 | 
						|
     $      Z( 1, 1 ) = CONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      IF( ICOMPZ.EQ.2 )
 | 
						|
     $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
 | 
						|
*
 | 
						|
*     Call DPTTRF to factor the matrix.
 | 
						|
*
 | 
						|
      CALL DPTTRF( N, D, E, INFO )
 | 
						|
      IF( INFO.NE.0 )
 | 
						|
     $   RETURN
 | 
						|
      DO 10 I = 1, N
 | 
						|
         D( I ) = SQRT( D( I ) )
 | 
						|
   10 CONTINUE
 | 
						|
      DO 20 I = 1, N - 1
 | 
						|
         E( I ) = E( I )*D( I )
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     Call ZBDSQR to compute the singular values/vectors of the
 | 
						|
*     bidiagonal factor.
 | 
						|
*
 | 
						|
      IF( ICOMPZ.GT.0 ) THEN
 | 
						|
         NRU = N
 | 
						|
      ELSE
 | 
						|
         NRU = 0
 | 
						|
      END IF
 | 
						|
      CALL ZBDSQR( 'Lower', N, 0, NRU, 0, D, E, VT, 1, Z, LDZ, C, 1,
 | 
						|
     $             WORK, INFO )
 | 
						|
*
 | 
						|
*     Square the singular values.
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         DO 30 I = 1, N
 | 
						|
            D( I ) = D( I )*D( I )
 | 
						|
   30    CONTINUE
 | 
						|
      ELSE
 | 
						|
         INFO = N + INFO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZPTEQR
 | 
						|
*
 | 
						|
      END
 |