542 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			542 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DGEGS + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegs.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegs.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegs.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
 | 
						|
*                         ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
 | 
						|
*                         LWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBVSL, JOBVSR
 | 
						|
*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | 
						|
*      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
 | 
						|
*      $                   VSR( LDVSR, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> This routine is deprecated and has been replaced by routine DGGES.
 | 
						|
*>
 | 
						|
*> DGEGS computes the eigenvalues, real Schur form, and, optionally,
 | 
						|
*> left and or/right Schur vectors of a real matrix pair (A,B).
 | 
						|
*> Given two square matrices A and B, the generalized real Schur
 | 
						|
*> factorization has the form
 | 
						|
*>
 | 
						|
*>   A = Q*S*Z**T,  B = Q*T*Z**T
 | 
						|
*>
 | 
						|
*> where Q and Z are orthogonal matrices, T is upper triangular, and S
 | 
						|
*> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
 | 
						|
*> blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
 | 
						|
*> of eigenvalues of (A,B).  The columns of Q are the left Schur vectors
 | 
						|
*> and the columns of Z are the right Schur vectors.
 | 
						|
*>
 | 
						|
*> If only the eigenvalues of (A,B) are needed, the driver routine
 | 
						|
*> DGEGV should be used instead.  See DGEGV for a description of the
 | 
						|
*> eigenvalues of the generalized nonsymmetric eigenvalue problem
 | 
						|
*> (GNEP).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBVSL
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVSL is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the left Schur vectors;
 | 
						|
*>          = 'V':  compute the left Schur vectors (returned in VSL).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBVSR
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVSR is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the right Schur vectors;
 | 
						|
*>          = 'V':  compute the right Schur vectors (returned in VSR).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA, N)
 | 
						|
*>          On entry, the matrix A.
 | 
						|
*>          On exit, the upper quasi-triangular matrix S from the
 | 
						|
*>          generalized real Schur factorization.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB, N)
 | 
						|
*>          On entry, the matrix B.
 | 
						|
*>          On exit, the upper triangular matrix T from the generalized
 | 
						|
*>          real Schur factorization.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAR
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAR is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The real parts of each scalar alpha defining an eigenvalue
 | 
						|
*>          of GNEP.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAI
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAI is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The imaginary parts of each scalar alpha defining an
 | 
						|
*>          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
 | 
						|
*>          eigenvalue is real; if positive, then the j-th and (j+1)-st
 | 
						|
*>          eigenvalues are a complex conjugate pair, with
 | 
						|
*>          ALPHAI(j+1) = -ALPHAI(j).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The scalars beta that define the eigenvalues of GNEP.
 | 
						|
*>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
 | 
						|
*>          beta = BETA(j) represent the j-th eigenvalue of the matrix
 | 
						|
*>          pair (A,B), in one of the forms lambda = alpha/beta or
 | 
						|
*>          mu = beta/alpha.  Since either lambda or mu may overflow,
 | 
						|
*>          they should not, in general, be computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VSL
 | 
						|
*> \verbatim
 | 
						|
*>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
 | 
						|
*>          If JOBVSL = 'V', the matrix of left Schur vectors Q.
 | 
						|
*>          Not referenced if JOBVSL = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVSL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVSL is INTEGER
 | 
						|
*>          The leading dimension of the matrix VSL. LDVSL >=1, and
 | 
						|
*>          if JOBVSL = 'V', LDVSL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VSR
 | 
						|
*> \verbatim
 | 
						|
*>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
 | 
						|
*>          If JOBVSR = 'V', the matrix of right Schur vectors Z.
 | 
						|
*>          Not referenced if JOBVSR = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVSR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVSR is INTEGER
 | 
						|
*>          The leading dimension of the matrix VSR. LDVSR >= 1, and
 | 
						|
*>          if JOBVSR = 'V', LDVSR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= max(1,4*N).
 | 
						|
*>          For good performance, LWORK must generally be larger.
 | 
						|
*>          To compute the optimal value of LWORK, call ILAENV to get
 | 
						|
*>          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
 | 
						|
*>          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
 | 
						|
*>          The optimal LWORK is  2*N + N*(NB+1).
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          = 1,...,N:
 | 
						|
*>                The QZ iteration failed.  (A,B) are not in Schur
 | 
						|
*>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
 | 
						|
*>                be correct for j=INFO+1,...,N.
 | 
						|
*>          > N:  errors that usually indicate LAPACK problems:
 | 
						|
*>                =N+1: error return from DGGBAL
 | 
						|
*>                =N+2: error return from DGEQRF
 | 
						|
*>                =N+3: error return from DORMQR
 | 
						|
*>                =N+4: error return from DORGQR
 | 
						|
*>                =N+5: error return from DGGHRD
 | 
						|
*>                =N+6: error return from DHGEQZ (other than failed
 | 
						|
*>                                                iteration)
 | 
						|
*>                =N+7: error return from DGGBAK (computing VSL)
 | 
						|
*>                =N+8: error return from DGGBAK (computing VSR)
 | 
						|
*>                =N+9: error return from DLASCL (various places)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup doubleGEeigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
 | 
						|
     $                  ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
 | 
						|
     $                  LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBVSL, JOBVSR
 | 
						|
      INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | 
						|
     $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
 | 
						|
     $                   VSR( LDVSR, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
 | 
						|
      INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
 | 
						|
     $                   IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
 | 
						|
     $                   LWKOPT, NB, NB1, NB2, NB3
 | 
						|
      DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
 | 
						|
     $                   SAFMIN, SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
 | 
						|
     $                   DLASCL, DLASET, DORGQR, DORMQR, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE
 | 
						|
      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          INT, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode the input arguments
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVSL, 'N' ) ) THEN
 | 
						|
         IJOBVL = 1
 | 
						|
         ILVSL = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
 | 
						|
         IJOBVL = 2
 | 
						|
         ILVSL = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVL = -1
 | 
						|
         ILVSL = .FALSE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVSR, 'N' ) ) THEN
 | 
						|
         IJOBVR = 1
 | 
						|
         ILVSR = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
 | 
						|
         IJOBVR = 2
 | 
						|
         ILVSR = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVR = -1
 | 
						|
         ILVSR = .FALSE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      LWKMIN = MAX( 4*N, 1 )
 | 
						|
      LWKOPT = LWKMIN
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      INFO = 0
 | 
						|
      IF( IJOBVL.LE.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( IJOBVR.LE.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
 | 
						|
         INFO = -12
 | 
						|
      ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
 | 
						|
         INFO = -14
 | 
						|
      ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -16
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
 | 
						|
         NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
 | 
						|
         NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
 | 
						|
         NB = MAX( NB1, NB2, NB3 )
 | 
						|
         LOPT = 2*N + N*( NB+1 )
 | 
						|
         WORK( 1 ) = LOPT
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DGEGS ', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
 | 
						|
      SAFMIN = DLAMCH( 'S' )
 | 
						|
      SMLNUM = N*SAFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
*     Scale A if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
 | 
						|
      ILASCL = .FALSE.
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
         ANRMTO = SMLNUM
 | 
						|
         ILASCL = .TRUE.
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
         ANRMTO = BIGNUM
 | 
						|
         ILASCL = .TRUE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILASCL ) THEN
 | 
						|
         CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale B if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
 | 
						|
      ILBSCL = .FALSE.
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
         BNRMTO = SMLNUM
 | 
						|
         ILBSCL = .TRUE.
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
         BNRMTO = BIGNUM
 | 
						|
         ILBSCL = .TRUE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILBSCL ) THEN
 | 
						|
         CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Permute the matrix to make it more nearly triangular
 | 
						|
*     Workspace layout:  (2*N words -- "work..." not actually used)
 | 
						|
*        left_permutation, right_permutation, work...
 | 
						|
*
 | 
						|
      ILEFT = 1
 | 
						|
      IRIGHT = N + 1
 | 
						|
      IWORK = IRIGHT + N
 | 
						|
      CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
 | 
						|
     $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 1
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Reduce B to triangular form, and initialize VSL and/or VSR
 | 
						|
*     Workspace layout:  ("work..." must have at least N words)
 | 
						|
*        left_permutation, right_permutation, tau, work...
 | 
						|
*
 | 
						|
      IROWS = IHI + 1 - ILO
 | 
						|
      ICOLS = N + 1 - ILO
 | 
						|
      ITAU = IWORK
 | 
						|
      IWORK = ITAU + IROWS
 | 
						|
      CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | 
						|
     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
 | 
						|
      IF( IINFO.GE.0 )
 | 
						|
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 2
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | 
						|
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
 | 
						|
     $             LWORK+1-IWORK, IINFO )
 | 
						|
      IF( IINFO.GE.0 )
 | 
						|
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 3
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILVSL ) THEN
 | 
						|
         CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
 | 
						|
         CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | 
						|
     $                VSL( ILO+1, ILO ), LDVSL )
 | 
						|
         CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
 | 
						|
     $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
 | 
						|
     $                IINFO )
 | 
						|
         IF( IINFO.GE.0 )
 | 
						|
     $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 4
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILVSR )
 | 
						|
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
 | 
						|
*
 | 
						|
*     Reduce to generalized Hessenberg form
 | 
						|
*
 | 
						|
      CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
 | 
						|
     $             LDVSL, VSR, LDVSR, IINFO )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 5
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Perform QZ algorithm, computing Schur vectors if desired
 | 
						|
*     Workspace layout:  ("work..." must have at least 1 word)
 | 
						|
*        left_permutation, right_permutation, work...
 | 
						|
*
 | 
						|
      IWORK = ITAU
 | 
						|
      CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
 | 
						|
     $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
 | 
						|
     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
 | 
						|
      IF( IINFO.GE.0 )
 | 
						|
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
 | 
						|
            INFO = IINFO
 | 
						|
         ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
 | 
						|
            INFO = IINFO - N
 | 
						|
         ELSE
 | 
						|
            INFO = N + 6
 | 
						|
         END IF
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Apply permutation to VSL and VSR
 | 
						|
*
 | 
						|
      IF( ILVSL ) THEN
 | 
						|
         CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
 | 
						|
     $                WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 7
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( ILVSR ) THEN
 | 
						|
         CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
 | 
						|
     $                WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 8
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling
 | 
						|
*
 | 
						|
      IF( ILASCL ) THEN
 | 
						|
         CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
 | 
						|
     $                IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
 | 
						|
     $                IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILBSCL ) THEN
 | 
						|
         CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGEGS
 | 
						|
*
 | 
						|
      END
 |