243 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DQLT02
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DQLT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
 | 
						|
*                          RWORK, RESULT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            K, LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), AF( LDA, * ), L( LDA, * ),
 | 
						|
*      $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
 | 
						|
*      $                   WORK( LWORK )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DQLT02 tests DORGQL, which generates an m-by-n matrix Q with
 | 
						|
*> orthonormal columns that is defined as the product of k elementary
 | 
						|
*> reflectors.
 | 
						|
*>
 | 
						|
*> Given the QL factorization of an m-by-n matrix A, DQLT02 generates
 | 
						|
*> the orthogonal matrix Q defined by the factorization of the last k
 | 
						|
*> columns of A; it compares L(m-n+1:m,n-k+1:n) with
 | 
						|
*> Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are
 | 
						|
*> orthonormal.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix Q to be generated.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix Q to be generated.
 | 
						|
*>          M >= N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of elementary reflectors whose product defines the
 | 
						|
*>          matrix Q. N >= K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          The m-by-n matrix A which was factorized by DQLT01.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          Details of the QL factorization of A, as returned by DGEQLF.
 | 
						|
*>          See DGEQLF for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the arrays A, AF, Q and L. LDA >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The scalar factors of the elementary reflectors corresponding
 | 
						|
*>          to the QL factorization in AF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION array, dimension (2)
 | 
						|
*>          The test ratios:
 | 
						|
*>          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
 | 
						|
*>          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup double_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DQLT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
 | 
						|
     $                   RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            K, LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), AF( LDA, * ), L( LDA, * ),
 | 
						|
     $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
 | 
						|
     $                   WORK( LWORK )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      DOUBLE PRECISION   ROGUE
 | 
						|
      PARAMETER          ( ROGUE = -1.0D+10 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            INFO
 | 
						|
      DOUBLE PRECISION   ANORM, EPS, RESID
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
 | 
						|
      EXTERNAL           DLAMCH, DLANGE, DLANSY
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DLACPY, DLASET, DORGQL, DSYRK
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
 | 
						|
         RESULT( 1 ) = ZERO
 | 
						|
         RESULT( 2 ) = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
*     Copy the last k columns of the factorization to the array Q
 | 
						|
*
 | 
						|
      CALL DLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
 | 
						|
      IF( K.LT.M )
 | 
						|
     $   CALL DLACPY( 'Full', M-K, K, AF( 1, N-K+1 ), LDA,
 | 
						|
     $                Q( 1, N-K+1 ), LDA )
 | 
						|
      IF( K.GT.1 )
 | 
						|
     $   CALL DLACPY( 'Upper', K-1, K-1, AF( M-K+1, N-K+2 ), LDA,
 | 
						|
     $                Q( M-K+1, N-K+2 ), LDA )
 | 
						|
*
 | 
						|
*     Generate the last n columns of the matrix Q
 | 
						|
*
 | 
						|
      SRNAMT = 'DORGQL'
 | 
						|
      CALL DORGQL( M, N, K, Q, LDA, TAU( N-K+1 ), WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*     Copy L(m-n+1:m,n-k+1:n)
 | 
						|
*
 | 
						|
      CALL DLASET( 'Full', N, K, ZERO, ZERO, L( M-N+1, N-K+1 ), LDA )
 | 
						|
      CALL DLACPY( 'Lower', K, K, AF( M-K+1, N-K+1 ), LDA,
 | 
						|
     $             L( M-K+1, N-K+1 ), LDA )
 | 
						|
*
 | 
						|
*     Compute L(m-n+1:m,n-k+1:n) - Q(1:m,m-n+1:m)' * A(1:m,n-k+1:n)
 | 
						|
*
 | 
						|
      CALL DGEMM( 'Transpose', 'No transpose', N, K, M, -ONE, Q, LDA,
 | 
						|
     $            A( 1, N-K+1 ), LDA, ONE, L( M-N+1, N-K+1 ), LDA )
 | 
						|
*
 | 
						|
*     Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) .
 | 
						|
*
 | 
						|
      ANORM = DLANGE( '1', M, K, A( 1, N-K+1 ), LDA, RWORK )
 | 
						|
      RESID = DLANGE( '1', N, K, L( M-N+1, N-K+1 ), LDA, RWORK )
 | 
						|
      IF( ANORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M ) ) ) / ANORM ) / EPS
 | 
						|
      ELSE
 | 
						|
         RESULT( 1 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute I - Q'*Q
 | 
						|
*
 | 
						|
      CALL DLASET( 'Full', N, N, ZERO, ONE, L, LDA )
 | 
						|
      CALL DSYRK( 'Upper', 'Transpose', N, M, -ONE, Q, LDA, ONE, L,
 | 
						|
     $            LDA )
 | 
						|
*
 | 
						|
*     Compute norm( I - Q'*Q ) / ( M * EPS ) .
 | 
						|
*
 | 
						|
      RESID = DLANSY( '1', 'Upper', N, L, LDA, RWORK )
 | 
						|
*
 | 
						|
      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DQLT02
 | 
						|
*
 | 
						|
      END
 |