290 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAHRD + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahrd.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahrd.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahrd.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            K, LDA, LDT, LDY, N, NB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), T( LDT, NB ), TAU( NB ),
 | 
						|
*      $                   Y( LDY, NB )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> This routine is deprecated and has been replaced by routine CLAHR2.
 | 
						|
*>
 | 
						|
*> CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1)
 | 
						|
*> matrix A so that elements below the k-th subdiagonal are zero. The
 | 
						|
*> reduction is performed by a unitary similarity transformation
 | 
						|
*> Q**H * A * Q. The routine returns the matrices V and T which determine
 | 
						|
*> Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The offset for the reduction. Elements below the k-th
 | 
						|
*>          subdiagonal in the first NB columns are reduced to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          The number of columns to be reduced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N-K+1)
 | 
						|
*>          On entry, the n-by-(n-k+1) general matrix A.
 | 
						|
*>          On exit, the elements on and above the k-th subdiagonal in
 | 
						|
*>          the first NB columns are overwritten with the corresponding
 | 
						|
*>          elements of the reduced matrix; the elements below the k-th
 | 
						|
*>          subdiagonal, with the array TAU, represent the matrix Q as a
 | 
						|
*>          product of elementary reflectors. The other columns of A are
 | 
						|
*>          unchanged. See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX array, dimension (NB)
 | 
						|
*>          The scalar factors of the elementary reflectors. See Further
 | 
						|
*>          Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is COMPLEX array, dimension (LDT,NB)
 | 
						|
*>          The upper triangular matrix T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.  LDT >= NB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Y
 | 
						|
*> \verbatim
 | 
						|
*>          Y is COMPLEX array, dimension (LDY,NB)
 | 
						|
*>          The n-by-nb matrix Y.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDY
 | 
						|
*> \verbatim
 | 
						|
*>          LDY is INTEGER
 | 
						|
*>          The leading dimension of the array Y. LDY >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The matrix Q is represented as a product of nb elementary reflectors
 | 
						|
*>
 | 
						|
*>     Q = H(1) H(2) . . . H(nb).
 | 
						|
*>
 | 
						|
*>  Each H(i) has the form
 | 
						|
*>
 | 
						|
*>     H(i) = I - tau * v * v**H
 | 
						|
*>
 | 
						|
*>  where tau is a complex scalar, and v is a complex vector with
 | 
						|
*>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
 | 
						|
*>  A(i+k+1:n,i), and tau in TAU(i).
 | 
						|
*>
 | 
						|
*>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
 | 
						|
*>  V which is needed, with T and Y, to apply the transformation to the
 | 
						|
*>  unreduced part of the matrix, using an update of the form:
 | 
						|
*>  A := (I - V*T*V**H) * (A - Y*V**H).
 | 
						|
*>
 | 
						|
*>  The contents of A on exit are illustrated by the following example
 | 
						|
*>  with n = 7, k = 3 and nb = 2:
 | 
						|
*>
 | 
						|
*>     ( a   h   a   a   a )
 | 
						|
*>     ( a   h   a   a   a )
 | 
						|
*>     ( a   h   a   a   a )
 | 
						|
*>     ( h   h   a   a   a )
 | 
						|
*>     ( v1  h   a   a   a )
 | 
						|
*>     ( v1  v2  a   a   a )
 | 
						|
*>     ( v1  v2  a   a   a )
 | 
						|
*>
 | 
						|
*>  where a denotes an element of the original matrix A, h denotes a
 | 
						|
*>  modified element of the upper Hessenberg matrix H, and vi denotes an
 | 
						|
*>  element of the vector defining H(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            K, LDA, LDT, LDY, N, NB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), T( LDT, NB ), TAU( NB ),
 | 
						|
     $                   Y( LDY, NB )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   ONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I
 | 
						|
      COMPLEX            EI
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CAXPY, CCOPY, CGEMV, CLACGV, CLARFG, CSCAL,
 | 
						|
     $                   CTRMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.1 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      DO 10 I = 1, NB
 | 
						|
         IF( I.GT.1 ) THEN
 | 
						|
*
 | 
						|
*           Update A(1:n,i)
 | 
						|
*
 | 
						|
*           Compute i-th column of A - Y * V**H
 | 
						|
*
 | 
						|
            CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
 | 
						|
            CALL CGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
 | 
						|
     $                  A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
 | 
						|
            CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
 | 
						|
*
 | 
						|
*           Apply I - V * T**H * V**H to this column (call it b) from the
 | 
						|
*           left, using the last column of T as workspace
 | 
						|
*
 | 
						|
*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
 | 
						|
*                    ( V2 )             ( b2 )
 | 
						|
*
 | 
						|
*           where V1 is unit lower triangular
 | 
						|
*
 | 
						|
*           w := V1**H * b1
 | 
						|
*
 | 
						|
            CALL CCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
 | 
						|
            CALL CTRMV( 'Lower', 'Conjugate transpose', 'Unit', I-1,
 | 
						|
     $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
 | 
						|
*
 | 
						|
*           w := w + V2**H *b2
 | 
						|
*
 | 
						|
            CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, ONE,
 | 
						|
     $                  A( K+I, 1 ), LDA, A( K+I, I ), 1, ONE,
 | 
						|
     $                  T( 1, NB ), 1 )
 | 
						|
*
 | 
						|
*           w := T**H *w
 | 
						|
*
 | 
						|
            CALL CTRMV( 'Upper', 'Conjugate transpose', 'Non-unit', I-1,
 | 
						|
     $                  T, LDT, T( 1, NB ), 1 )
 | 
						|
*
 | 
						|
*           b2 := b2 - V2*w
 | 
						|
*
 | 
						|
            CALL CGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
 | 
						|
     $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
 | 
						|
*
 | 
						|
*           b1 := b1 - V1*w
 | 
						|
*
 | 
						|
            CALL CTRMV( 'Lower', 'No transpose', 'Unit', I-1,
 | 
						|
     $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
 | 
						|
            CALL CAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
 | 
						|
*
 | 
						|
            A( K+I-1, I-1 ) = EI
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Generate the elementary reflector H(i) to annihilate
 | 
						|
*        A(k+i+1:n,i)
 | 
						|
*
 | 
						|
         EI = A( K+I, I )
 | 
						|
         CALL CLARFG( N-K-I+1, EI, A( MIN( K+I+1, N ), I ), 1,
 | 
						|
     $                TAU( I ) )
 | 
						|
         A( K+I, I ) = ONE
 | 
						|
*
 | 
						|
*        Compute  Y(1:n,i)
 | 
						|
*
 | 
						|
         CALL CGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
 | 
						|
     $               A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
 | 
						|
         CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, ONE,
 | 
						|
     $               A( K+I, 1 ), LDA, A( K+I, I ), 1, ZERO, T( 1, I ),
 | 
						|
     $               1 )
 | 
						|
         CALL CGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
 | 
						|
     $               ONE, Y( 1, I ), 1 )
 | 
						|
         CALL CSCAL( N, TAU( I ), Y( 1, I ), 1 )
 | 
						|
*
 | 
						|
*        Compute T(1:i,i)
 | 
						|
*
 | 
						|
         CALL CSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
 | 
						|
         CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
 | 
						|
     $               T( 1, I ), 1 )
 | 
						|
         T( I, I ) = TAU( I )
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      A( K+NB, NB ) = EI
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAHRD
 | 
						|
*
 | 
						|
      END
 |